	hem I (CHM 201) Fall 18 Dr. Hahn MWF 8 a			
Name Name Print NW = nowork Please show work on all questions for full credit & partial credit. (20 total pts)				
1.	Complete the following reaction (10 pts)	pullum 0100000 (2000	attempt - 2)	
a.	Molecular reaction (formula equation) (hint:	look at your solubili	ry rules table) (6 pts, 3 pts each)	
$K_2 CO_3 + Ca Cl_2 \Rightarrow Ca (O_2(5) + 2 \times Cl$ Specifical				
	Give the complete ionic reaction of the reaction	on above in (a) (2 pts)	and the second s	
2kt + Cog2 + Cat + 260 -> Ca(03(s) + 2kt + 260				
c.	Give the net ionic reaction of the reaction above	ve in (a) (2 pts)		
	CO3-2+ Ca+2-	- Cac	03(5)	
2.	Given the reaction below and assuming comp	lete dissociation and	complete reaction (6 pts)	
	$2 \text{ H Cl (aq)} + \text{Ba (OH)}_2(\text{aq}) \rightarrow \text{Ba Cl}_2(\text{cl})$	$(aq) + 2 H_2O(1)$		
If you start the reaction with 23.5 mL of 0.1 M H Cl solution, assuming that the HCl is the limiting reagent, how many grams of the Ba Cl ₂ (FW Ba Cl ₂ = 208.23 g/mol) will you make assuming complete reaction.				
23,	Sml x 0.1 mol HCl x 1000 me HCl x soln	1 mil Bal 2 mal	le assuming complete reaction. Le 208,239 Ball I mal	
9	soln.	HU	Ball,	
Si perimentales	0,245 g Ba Cl2	(BA-5) (attemp		
3.	Give the oxidation state in the following reage			
a.	Fe <u>2000</u> b. Cl in Fe Cl ₂ c. C	12 <u>200</u>	d. P in PO_4^{-3}	
	Fe tend b. Clin Fe Cl2 - c. C	element	P + 4(-2) = -3	
Extra Credit: (4 pts) In the following redox reaction, fill in the blank with either (A) being reduced (B) being oxidized. Note the oxidation states given above the elements				
+2 -2	+2 -2 zero +4 -2			
Pb 0 - A + 2 ē	$+ \begin{array}{c} CO \rightarrow Pb + CO_2 \\ -2e \end{array}$			

Gen Chem I (CHM 201) Fall 18 Dr. Hahn MWF 8 ar	n Quiz VI form B 11/12 M Exam#			
Name Kery	Name BA= bad attempt			
Sign Please show work on all questions for full credit & p	Print Print = n 0 w ovk partial credit. (20 total pts) pink			
1. Complete the following reaction (10 pts)	Catternot - 5)			
	look at your solubility rules table) (6 pts, 3 pts each)			
$2 \operatorname{Ba} (OH)_2 + 2 \operatorname{Al} \operatorname{Cl}_3 \rightarrow 2 \operatorname{Dl} (O+)_2 (5) -$	+3Ba Clz (spectator)			
b. Give the complete ionic reaction of the reaction				
2 Bet + 404 + 2 De+3 + 6 Ce				
c. Give the new ionic reaction of the reaction above in (a) (2 pts)				
404 + 2 Dets ->	2 pl (OH); (S)			
2. Given the reaction below and assuming compl	ete dissociation and complete reaction (6 pts)			
H_2SO_4 (aq) + 2 Li OH (aq) \Rightarrow Li ₂ SO ₄ (aq)	$+ 2 H_2O(1)$			
If you start the reaction with 79.2 mL of 1.32 M H ₂ SO how many grams of the Li ₂ SO ₄ (FW Li ₂ SO ₄ = 109.9				
19,2 ml x 1,32 hol Hs 04 x 12,04 (000ml 50/n 12504 50/n	I mal Cissou x 109.953250			
12)04 (000ml	Inal Inal			
501h 12504 501h	L: 506			
= 11,5 g Liz 504 GA	-3) 11			
3. Give the oxidation state in the following reager	nts. Show work. (4 pts, 1 pt each)			
a. Al 7 e a b. Al in AlCl3 + 3 c. S	2.0.00 d. N in H NO ₃ + 5			
element +3 smarg3	Zen d. Nin HNO3 +5 Clerent N+(+1)+3(-2) = Zen			
Extra Credit: (4 pts) In the following redox reacti	on, fill in the blank with either (A) being reduced (B)			
being oxidized. Note the oxidation states given abov -2 $\stackrel{\frown}{e}$	e the elements			
	attempt - b)			
Zero +1 -1 +2 -1 zero $Mg + HCl \rightarrow MgCl_2 + H_2$				
B A 2(+15)	NW-E			