

- (f) all of the above are correct
- (g) Only (b), (c), (d) and (e) are correct
- 7. In naming carboxylic acid derivatives, one takes the name of the root carboxylic acid (propanoic acid) remove (a) ic acid and add yl chloride for the acid chloride. (propanoyl chloride). CH₃CH₂CCl
- (b) remove acid and then add anhydride. (propanoic ethanoic chloride). CH₃CH₂ C-O-C CH₃
- (c) remove ic acid add --ate and then use N= alkyl for the alky group attached at the OR ester position (N=ethyl propanoate) CH₃CH₂-C-O-CH₂ CH₃
- (d) remove ic acid add amide and then use N-alkyl for the alkyl group attached at the NR position (N-eg propanamide) CH₃ CH₂ C-N-CH₃
- (e) all of the above are correct.
- (f). Of the above (a), (b), and (d) are correct.
- 8. According to Zaitsev's Rule, which is the correct ordering of the stabilities for the following series of molecules

- (a). most stable (1), (2), (3), (4), (5) least stable
- (a) most stable (1), (2), (4), (5), (3) least stable
- (a). most stable (5), (2), (3), (4), (1) least stable
- (a). most stable (1), (4), (2), (5), (3) least stable

- Short Answers (37 pts)
- A. Nomenclature. (6 pts)
- (a) Given the name, draw the molecule

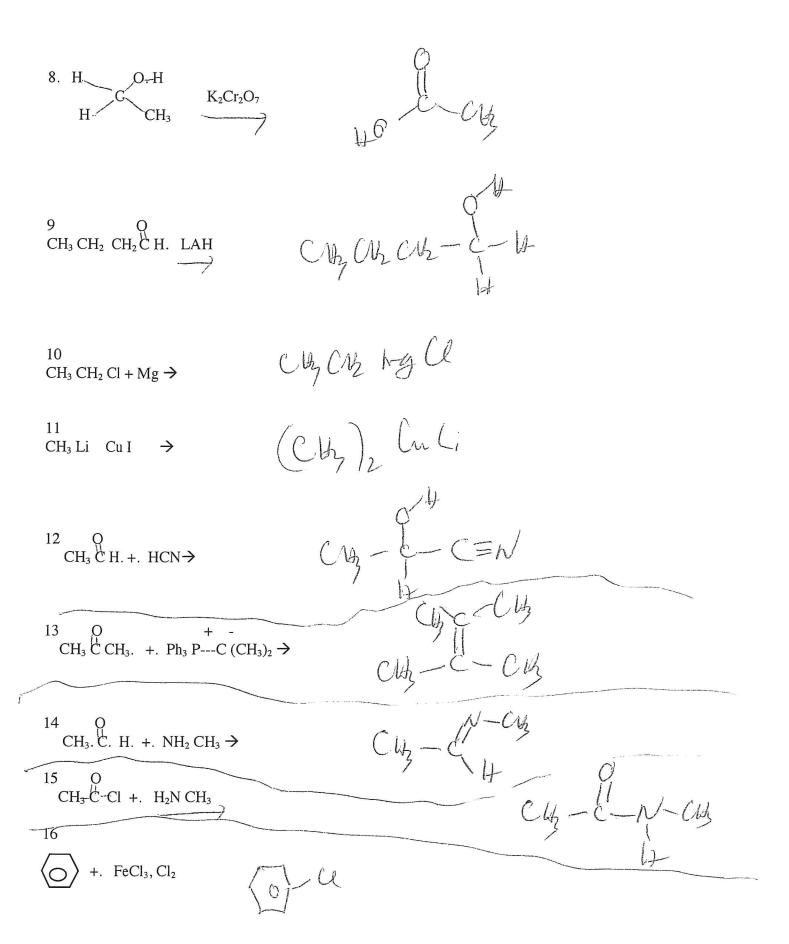
(2 pts)

2-chloro-4,4-dimethyl hexan-3-one

(b). The IUPAC name for the molecule shown is _____

cheptante 2,3,4 - trinettyl

217, 4 - Evinethyl heptanal

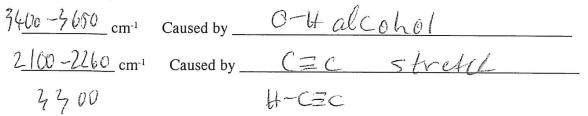

The IUPAC name for the molecule shown is ____ (c).

heptyne

5-bromot, 6-dimethyl hept-2-yre

- B. Write the organic product of the following reaction. Do not balance the reaction. (circle the number of the 10 you want graded. If you do not circle, I will just grade the first 10. (2 pts each, 20 pts)
- 1. CH₃CH₂CH₂CI + Na O CH₂CH₃· → CH₂ CH₂ CH₂ C CH₂ CH
- 2. CH₃CH₂CH₂Br + OH· → CH CH CH CH -O-H
 - 3. CH₃O CH₂CH₃. +. H Br → CH₂CH₃ + Br CH₂CH₃
- 4. CH₃ CH₂ CH₃ CH₂ CH₃ CH₃ CH₃ CH₂ CH₃ CH₂ CH₃ CH
- 5. CH₃--C-CH₃. KOC(CH₃)₃
 Br. H

 C □ C = C □
- 7. C=C-CH₂CH₃. +. CH₃Br



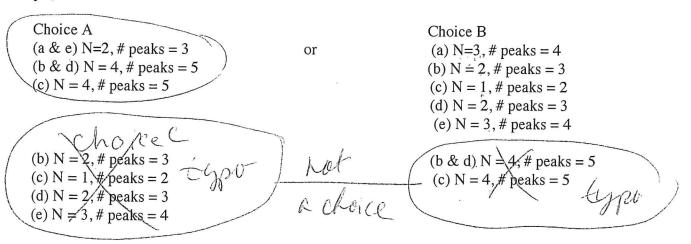
C.	Short Answer:	(24	pts)

1.	give the IR expect	ed peak for the mo	olecule shown below	(8 pts 2	nts each blank)
	Br. o the Hit empoor	ou pount for the file	needle blieff il beleff	(U plo, Z	pus cach brank)

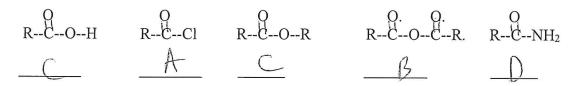
H -C≡C-CH ₂ -O-H	c-0 1050-11
2850-2960 C-H	c-0 (V)

For the IR, give 2 expected peak and the parts of the molecule and its movement which is expected to cause the peak . (8. pts)

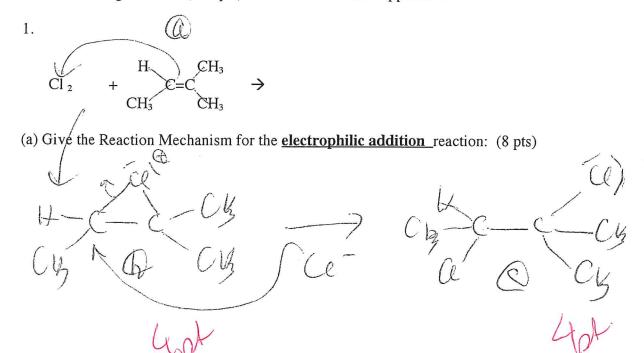
2. For the molecule CH_3CH_2 —C— CH_2CH_2 Cl(a). (b). (c). (d) (e)

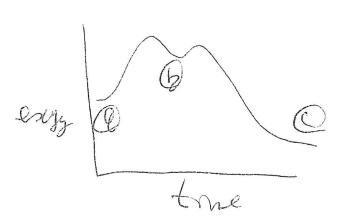

for proton NMR. (use the label shown above). (6 pts, 2 pts each)

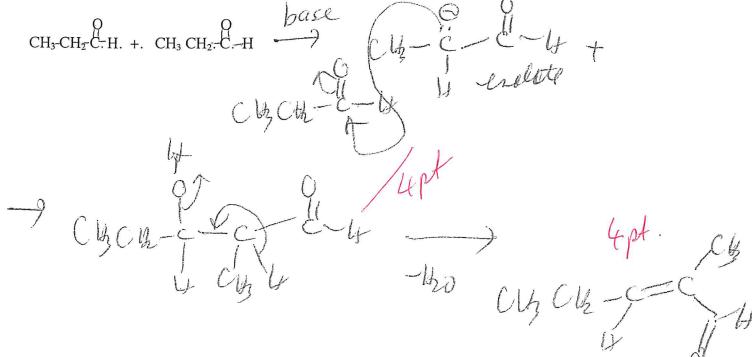
(1) approximate chemical shift order of peaks is: [(c, b&d, a&e) or (a, e, b, d, c)] (circle one)

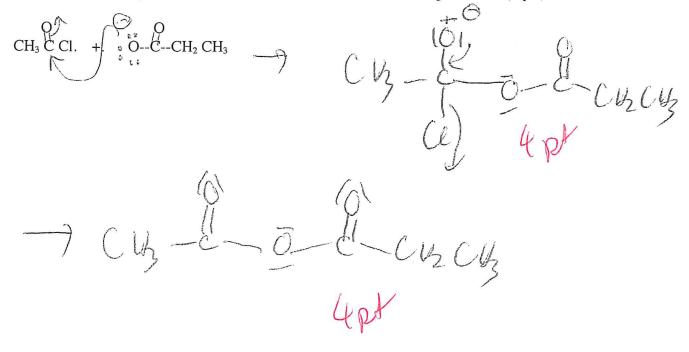

(2) integration areas expected (give integration number for # hydrogens) circle all correct integrations. (each choice is defined by the $\{\ \}$

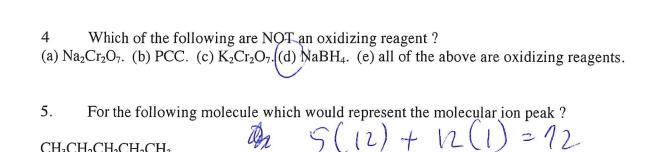
$$\{(a)\ 3H\}$$
 or $\{(e)\ 3\ H\}$ or $\{[(b)\ \&\ (c)\ 4\ H\}$ or $\{(a)\ \&\ (e)\ 6\ H\}$. or. $\{(b)\ \&\ (d)\ 4\ H\}$

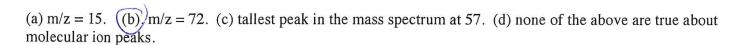

(3) show N values, the coupling equation and the expected coupling Circle either (Choice A) or (Choice B)(6 pts)


3. The order of reactivity of carboxylic acid derivaties is: Write <u>A for most reactive</u> to <u>D for least reactive</u>. (2 of the functional groups have about the same reactivity. (use the same letter for the 2 functional group with nearly the same reactivity) (10 pts, 2 pts each)


Part III. Long Answers (28 pts) Show work where applicable.

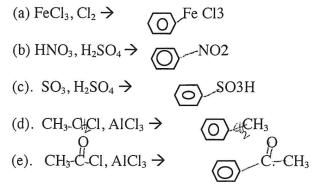

(b) Give the energy diagram and label your energy diagram to match your reaction mechanism that you gave above. (4 pts)





(b) Give the Nucleophilic Substitution Mechanism for the following reaction. (8 pts)

Final Exam Organic Chemistry II 5/2 Tues Dr. Hahn Spring 2023 (100 pts, 8 pages) exam #
Name (print). Form B
Please show work on all problems for partial & full credit. You will receive no credit for illegible answers You may lose points if you do not follow directions. This is a timed exam and must be completed in the time given. Any incomplete portions will receive a zero. Please use the back of the exam pages as scratch paper. Good Luck!!
I. Multiple Choice (32 pts) Choose the best statement by circling ONE letter. (If the question specifically states select all, you should obviously select all.) (obviously no partial credit for multiple choice). (4 pts each number)
1. In naming carboxylic acid derivatives, one takes the name of the root carboxylic acid (propanoic acid) remove (a) ic acid and add yl chloride for the acid chloride. (propanoyl chloride). CH ₃ CH ₂ CCl
O. O (b) remove acid and then add anhydride. (propanoic ethanoic chloride). CH ₃ CH ₂ -C-O·C-CH ₃
(c) remove ic acid addate and then use N- alkyl for the alky group attached at the OR ester position (N-ethyl propanoate) CH ₃ CH ₂ -C-O-CH ₂ CH ₃ CH ₃ CH ₂ -C-O-CH ₂ CH ₃
(d) remove ic acid add amide and then use N-alkyl for the alkyl group attached at the NR position (N-ethyl propanamide) CH ₃ CH ₂ C-N-CH ₃ H (e) all of the above are correct.
(f). Of the above (a), (b), and (d) are correct.
2. According to Zaitsev's Rule, which is the correct ordering of the stabilities for the following series of molecules $(1) > (2) > (4) > (5) > (3)$
R. R. H. R. H. R. R. H. C=C R. R. R. H. H. H. H. H. H. H. H. (1) (2) (3) (4) (5)
(a). most stable (1), (2), (3), (4), (5) least stable most stable (1), (2), (4), (5), (3) least stable most stable (5), (2), (3), (4), (1) least stable (a). most stable (1), (4), (2), (5), (3) least stable
Circle the letter of all of the following molecules which is a primary alcohol? CH ₃



- 6. Given the following molecules, choose the one terminal alkyne.
- (b) H--C≅C CH₂ CH₂ CH₃. (c). CH₃--C≅C--CH₃ (a). CH₃---C≡C--CH₂CH₃. (d). $CH_3CH_2CH_2 C \equiv C CH_3$. (e). none of the molecules shown are terminal alkynes.
- 7. Which of the following is **NOT** a molecule which will react via nucleophilic substitution?
- (a) ester
- (b) acid halide
- (c) ketone
- (d). carboxylic acid

CH₃CH₂CH₂CH₂CH₃

In electrophile aromatic substitution reactions, the benzene ring with 6 hydrogens (a H at each corner of the hexagon) substitutes a H via one of the following reactants. Circle the best statement.

- (f) all of the above are correct
- (g) Only (b), (c), (d) and (e) are correct

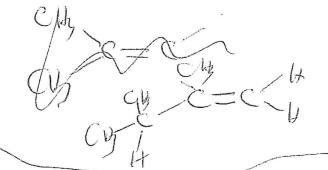
- II. Short Answers (37 pts)
- A. Nomenclature. (6 pts)
- (a) Given the name, draw the molecule

(2 pts)

Z-3,3-dimethyl oct-4-en-1-al

(b). The IUPAC name for the molecule shown is _

2-heptand one 1-chloro-4-methyl


1-chlon-4-mothyl-2-hep.

The IUPAC name for the molecule shown is _ (c).

2,6,6-trimetty)

B. Write the organic product of the following reaction. Do not balance the reaction. (circle the number of the 10 you want graded. If you do not circle, I will just grade the first 10. (2 pts each, 20 pts)

1. CH_3 CH_3 CH_2 CH_2 CH_3 CH_4 CH_3 CH_4 CH_5 CH_5 CH_6 CH_6 CH_7 CH_8 CH_8

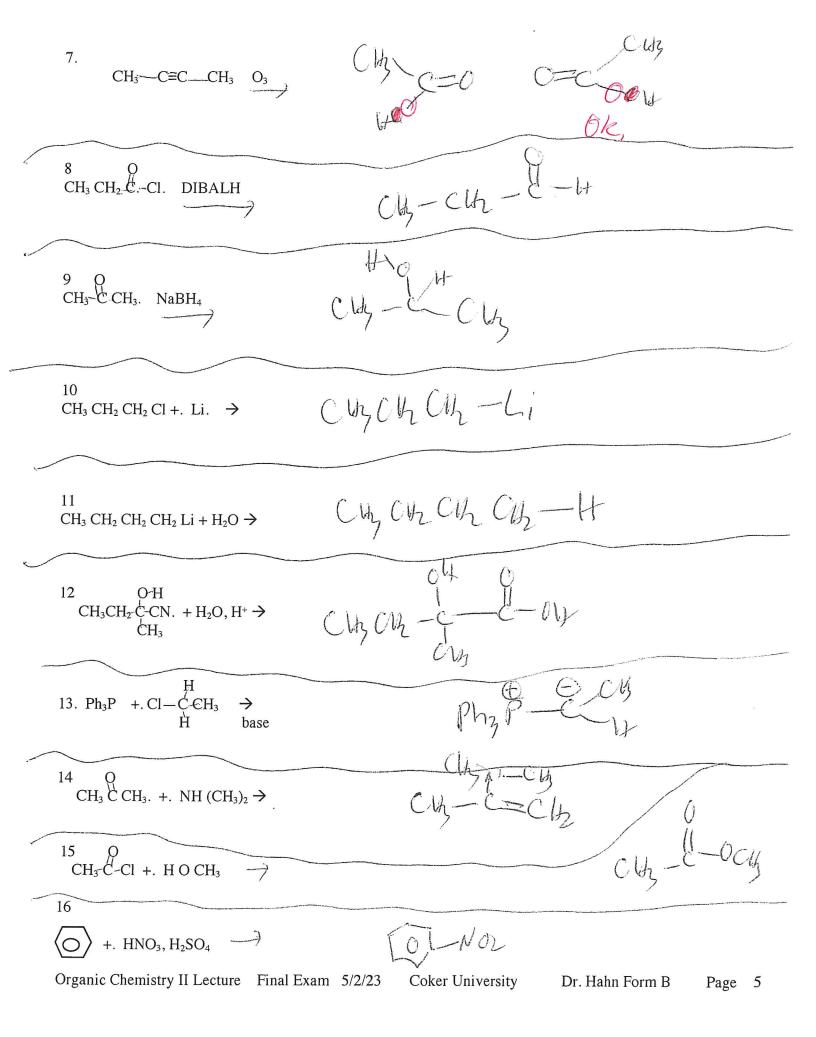
2 CH₃ CH₂ CH₂CH₂ OH + Na H →

Chychchch-00 Na

3. H CH₃

$$C=C$$
 + H OH \Rightarrow
H H. H (catalyst)

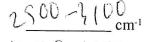
HC-CB


4. H. CH₂ CH₃ (1) BH₃/THF
(2) H₂O₂/OH
C=C
CH₃ CH₃

HO HC-C-Chay

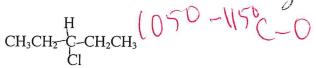
5. CH₃--C=C--CH₂CH₃. 2 Cl₂

CHy C-C-Chang


Chychlh-c=cs Wa

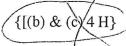
C.	Chart	(01 -1-)
L :	Short Answer:	1/4 nts
\circ .	Differ I this Well.	(ZIPLO)

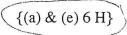
1. give the IR expected peak for the molecule shown below (8 pts, 2 pts each blank)


For the IR, give 2 expected peak and the parts of the molecule and its movement which is expected to cause the peak . (8. pts)

2.

Caused by ____




for proton NMR. (use the label shown above). (6 pts, 2 pts each)

(1) approximate chemical shift.

For the molecule

- order of peaks is: [(a, e, b, d, c) or ((c, b & d, a & e))]. (circle one)
- (2) integration areas expected (give integration number for # hydrogens) circle all correct integrations (each choice is defined by the { }

- $\{(a) 3H\}$
- $\{(e) 3 H\}$
- (b) & (d) 4 H
- (3) show N values, the coupling equation and the expected coupling Circle either (Choice A) or (Choice B)(6 pts)

Choice A

or

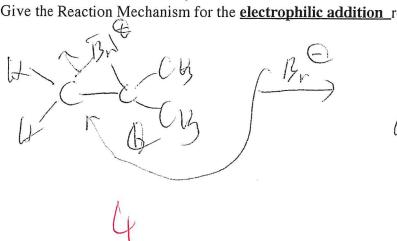
Choice B

- (a) N = 3, # peaks = 4
- (b) N = 2, # peaks = 3
- (c) N = 1, # peaks = 2
- (d) N = 2, # peaks = 3
- (e) N = 3, # peaks = 4

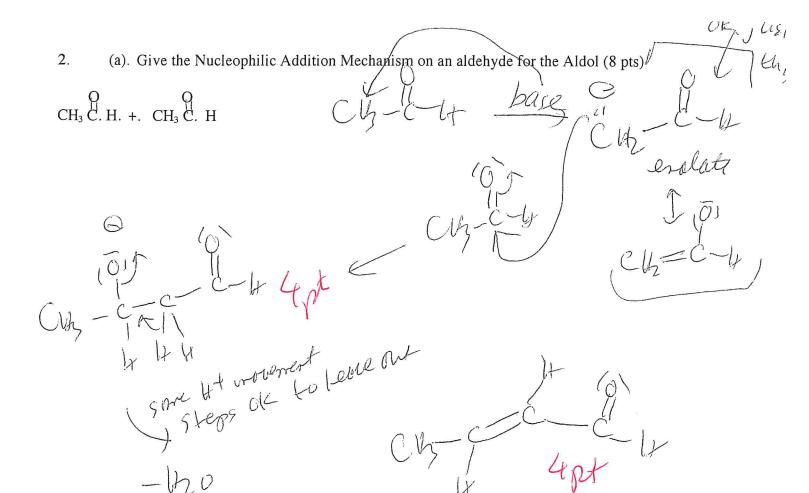
- (a & e) N=2, # peaks = 3
- (b & d) N = 4, # peaks = 5
- (c) N = 4, # peaks = 5
- 3. The order of reactivity of carboxylic acid derivaties is: Write A for most reactive to D for least reactive. (2 of the functional groups have about the same reactivity. (use the same letter for the 2 functional group with nearly the same reactivity) (10 pts, 2 pts each)

Organic Chemistry II Lecture Final Exam 5/2/23

Coker University


Dr. Hahn Form B

Page 6


Long Answers (28 pts) Part III. Show work where applicable.

1.

(a) Give the Reaction Mechanism for the <u>electrophilic addition</u> reaction: (8 pts)

(b) Give the energy diagram and label your energy diagram to match your reaction mechanism that you gave above. (4 pts)

(b) Give the Nucleophilic Substitution Mechanism for the following reaction. (8 pts)