

Mass Relationships in Chemical Reactions

Chapter 3 Chang & Goldsby Modified by Dr. Juliet Hahn

sion required for reproduction or display

© Derek Croucher/Alamy

Atomic Mass

Micro World atoms & molecules grams

Atomic mass is the mass of an atom in atomic mass units (amu)

By definition:

1 atom ¹²C "weighs" 12 amu

On this scale 1H = 1.008 amu 160 = 16.00 amu

Atomic Mass (1)

The *average atomic mass* is the weighted average of all of the naturally occurring isotopes of the element.

Atomic Mass on the Periodic Table

1A																5	8A
1 H Hydrogen 1.008	2 2A				11		Atomic n Atomic m	umber nass				13 3A	14 4A	15 5A	16 6A	17 7A	2 He Helium 4.003
3 Li Lithium 6.941	4 Be Beryllium 9.012											5 B Boron 10.81	6 C Carbon 12.01	7 N Nitrogen 14.01	8 O 0xygen 16.00	9 F Fluorine 19.00	10 Ne Neon 20.18
11 Na Sodium 22.99	12 Mg Magnesium 24.31	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 — 8B —	10	11 1B	12 2B	13 Al Aluminum 26.98	14 Si Silicon 28.09	15 P Phosphorus 30.97	16 S Sulfur 32.07	17 Cl Chlorine 35.45	18 Ar Argon 39.95
19 K Potassium 39.10	20 Ca Calcium 40.08	21 Sc Scandium 44.96	22 Ti Titanium 47.88	23 V Vanadium 50.94	24 Cr Chromium 52.00	25 Mn Manganese 54.94	26 Fe Iron 55.85	27 Co Cobalt 58.93	28 Ni ^{Nickel} 58.69	29 Cu Copper 63.55	30 Zn Zinc 65.39	31 Ga Gallium 69.72	32 Ge Germanium 72.59	33 As Arsenic 74.92	34 Se Selenium 78.96	35 Br Bromine 79.90	36 Kr Krypton 83.80
37 Rb Rubidium 85.47	38 Sr Strontium 87.62	39 Y Yttrium 88.91	40 Zr Zirconium 91.22	41 Nb Niobium 92.91	42 Mo Molybdenum 95.94	43 Tc Technetium (98)	44 Ru Ruthenium 101.1	45 Rh Rhodium 102.9	46 Pd Palladium 106.4	47 Ag Silver 107.9	48 Cd Cadmium 112.4	49 In Indium 114.8	50 Sn ^{Tin} 118.7	51 Sb Antimony 121.8	52 Te Tellurium 127.6	53 I Iodine 126.9	54 Xe Xenon 131.3
55 Cs Cesium 132.9	56 Ba Barium 137.3	57 La Lanthanum 138.9	72 Hf Hafnium 178.5	73 Ta Tantalum 180.9	74 W Tungsten 183.9	75 Re Rhenium 186.2	76 Os 0smium 190.2	77 Ir Iridium 192.2	78 Pt Platinum 195.1	79 Au ^{Gold} 197.0	80 Hg Mercury 200.6	81 Tl Thallium 204.4	82 Pb Lead 207.2	83 Bi Bismuth 209.0	84 Po Polonium (210)	85 At Astatine (210)	86 Rn Radon (222)
87 Fr Francium (223)	88 Ra Radium (226)	89 Ac Actinium (227)	104 Rf Rutherfordium (257)	105 Db Dubnium (260)	106 Sg Seaborgium (263)	107 Bh Bohrium (262)	108 Hs Hassium (265)	109 Mt Meitnerium (266)	110 Ds Darmstadtium (269)	111 Rg Roentgenium (272)	112 Cn Copernicium (285)	113	114	115	116	117	118

Matala														
Metals	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
Metalloids	Cerium 140.1	Praseodymium 140.9	Neodymium 144.2	Promethium (147)	Samarium 150.4	Europium 152.0	Gadolinium 157.3	Terbium 158.9	Dysprosium 162.5	Holmium 164.9	Erbium 167.3	Thulium 168.9	Ytterbium 173.0	Lutetium 175.0
Nonmetals	90 Th Thorium 232.0	91 Pa Protactinium (231)	92 U Uranium 238.0	93 Np Neptunium (237)	94 Pu Plutonium (242)	95 Am Americium (243)	96 Cm Curium (247)	97 Bk Berkelium (247)	98 Cf Californium (249)	99 Es Einsteinium (254)	100 Fm Fermium (253)	101 Md Mendelevium (256)	102 No Nobelium (254)	103 Lr Lawrencium (257)

The Mole

The Mole (mol): A unit to count numbers of particles

Dozen = 12

Pair = 2

The *mole (mol)* is the amount of a substance that contains as many elementary entities as there are atoms in exactly 12.00 grams of ¹²C

$$1 \ mol = N_A = 6.0221415 \times 10^{23}$$

Avogadro's number (N_A)

Molar Mass

eggs

Molar mass is the mass of 1 mole of atoms in grams

1mole 12 C atoms = 6.022×10^{23} atoms = 12.00g

conversion factor

 1^{12} C atom = 12.00 amu

1mole ${}^{12}C$ atoms = 12.00 g ${}^{12}C$

1 mole lithium atoms = 6.941 of Li

For any element atomic mass(amu) = molar mass(gram)

Molar Mass

eggs

Molar mass is the mass of 1 mole of atoms in grams

1 mole of atoms = 6.022×10^{23} atoms = atomic mass(in grams)

conversion factor for ANY element

For any element atomic mass(amu) = molar mass(gram)

Example 3.2

Helium (He) is a valuable gas used in industry, lowtemperature research, deep-sea diving tanks, and balloons.

How many moles of He atoms are in 6.46 g of He?

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Courtesy National Scientific Balloon Facility/Palestine, Texas

A scientific research helium balloon.

Example 3.2 (1)

Strategy

We are given grams of helium and asked to solve for moles of helium.

What conversion factor do we need to convert between grams and moles?

Arrange the appropriate conversion factor so that grams cancel and the unit moles is obtained for your answer.

Example 3.2 (2)

Solution

The conversion factor needed to convert between grams and moles is the molar mass. In the periodic table (see inside front cover) we see that the molar mass of He is 4.003 g. This can be expressed as

1 mol He = 4.003 g He

From this equality, we can write two conversion factors

$$\frac{1 \text{ mol He}}{4.003 \text{ g He}} \text{ and } \frac{4.003 \text{ g He}}{1 \text{ mol He}}$$

The conversion factor on the left is the correct one.

Grams will cancel, leaving the unit mol for the answer, that is,

$$6.46 \frac{\text{g He}}{\text{g He}} \times \frac{1 \text{ mol He}}{4.003 \frac{\text{g He}}{\text{g He}}} = 1.61 \text{ mol He}$$

Thus, there are 1.61 moles of He atoms in 6.46 g of He.

Check

Because the given mass (6.46 g) is larger than the molar mass of He, we expect to have more than 1 mole of He.

Example 3.3

Zinc (Zn) is a silvery metal that is used in making brass (with copper) and in plating iron to prevent corrosion.

How many grams of Zn are in 0.356 mole of Zn?

End 8/23 9 am class End 8/23 10 am class Copyright © McGraw-Hill Education. Permission required for reproduction or display.

© Charles D. Winters/Science Source

