Exam II	General Chemistry II (C	HEM 102) Form	A 3/6/13 9:30 au	n MWF Dr. Hahn	Exam #	
Name	KOK	······································	(print) Name			(sign)
question	now work for partial credits have no partial credit trade it. (1 pts print and s	Please write an			r Questions. Multi cannot read your w	
	MULTIPLE CHOICE. Cl question, 28 pts pts total)		ernative that best	completes the statem	nent or answers the	question. (2
1	A) mole percent A) mole percent B) molarity C) mole fraction D) mass percent E) molality	mount of solute i	n moles per liter o		otrelates	1) <u>I</u>
2	A) Which of the following A) When K << 1, the great extent. B) X >> 1 implies the C) When K ≈ 1, neith	reverse reaction is the reaction is the reaction is the forward or the forward or the forward reaction reaction	is favored and the very fast at produc r reverse reaction i exist at equilibrium	forward reaction doe ing products. s strongly favored, ar n.	es not proceed to a	2) <u>B</u>
3) Given the following rat doubled?		the rate of reaction	change if the concen	tration of Yis	3)
4)	Rate = k [X][Y] A) The rate of reaction B) The rate of reaction C) The rate of reaction D) The rate of reaction E) The rate of reaction F) The rate of reaction Calculate the molality of mL of water.	n will decrease by n will increase by n will increase by n will remain un	y a factor of 2. y a factor of 5. y a factor of 4. changed.	M	loles = (Kg 50 had 8 g/mol) in 500.0	(278) 134.00 (0,500)
		B) 0.556 m	C) 0.394 m	D)0.415 m	E) 0.254 m	Ø
5)		CH ₄ and $K_b = 0.5$ 0.512		C as the boiling point D) 70°C		5) \$\frac{1}{\sqrt{5}}\$

6) Identify the rate-determining step.	6)
A) always the last step	
B) the faster step	
(C) the slowest step	
D) the fast step	
E) always the second step	
	n
7) Give the term for the amount of solute in moles per kilogram of solvent.	7 2
A) molarity	•
(B) molality	
C) mass percent	
D) mole fraction	
E) mole percent	
	R
8) Identify the solute with the highest van't Hoff factor.	8)
A) $MgSO_4 - Z$,
(B) FeC ₁₃ 4	
C) MgCl ₂ — 3 D) NaCl — 2	
E) nonelectrolyte	
b) managemony te	_
9) Give the characteristic of a zero order reaction having only one reactant.	~ ()
	9)
A) The rate of the reaction is proportional to the square root of the concentration of the reactant.	
B) The rate of the reaction is directly proportional to the concentration of the reactant.	
The rate of the reaction is not proportional to the concentration of the reactant.	
D) The rate of the reaction is proportional to the natural logarithm of the concentration of the reactant.	
E) The rate of the reaction is proportional to the square of the concentration of the reactant.	
a) the rate of the reaction is proportional to the square of the concentration of the reactant.	_
10) Which of the following compounds will be most soluble in ethanol (CH3CH2OH)?	10) B
A) hexane (CH3CH2CH2CH2CH3) \	10)
(B) ethylene glycol (HOCH2CH2OH) (Ike dissolves	
C) trimethylamine (N(CH ₃) ₃) D) acetone (CH ₃ COCH ₂)	
D) acetone (CH ₃ COCH ₃)	
E) None of these compounds should be soluble in ethanol.	
44) 77	0
11) To make a 2.00 m solution, one could take 2.00 moles of solute and add	11)
A) enough solvent to make 1.00 kg of solution.	-
(B) 1.00 kg of solvent.	
C) enough solvent to make 1.00 L of solution.	
D) 1.00 L of solvent.	

12) Given the following balanced equation, determine the rate of reaction with respect to [NOCI]. Q A > 10 C > 10 C > 10 NOCI(g) > 10 NOCI(g)

(A) Rate =
$$+\frac{1}{2}\frac{\Delta[NOCI]}{\Delta t}$$

$$2 \operatorname{NO}(g) + \operatorname{Cl}_{2}(g) \rightarrow 2 \operatorname{NOCl}(g)$$

$$(A) \operatorname{Rate} = +\frac{1}{2} \frac{\Delta[\operatorname{NOCl}]}{\Delta t} \qquad \text{rat} = -\frac{1}{2} \frac{\Delta[\operatorname{NOCl}]}{\Delta t}$$

$$B) \operatorname{Rate} = -\frac{1}{2} \frac{\Delta[\operatorname{NOCl}]}{\Delta t} \qquad \text{rat} = -\frac{2 \Delta[\operatorname{NOCl}]}{\Delta t}$$

$$C) \operatorname{Rate} = -\frac{2 \Delta[\operatorname{NOCl}]}{\Delta t} \qquad \text{rat} = -\frac{1}{2} \frac{\Delta[\operatorname{NOCl}]}{\Delta t}$$

B) Rate =
$$-\frac{1}{2} \frac{\Delta[NO]}{\Delta t}$$

D) Rate =
$$-\frac{1}{2} \frac{\Delta [NOCI]}{\Delta t}$$

- E) It is not possible to determine without more information.

13) Express the equilibrium constant for the following reaction.
 a A- b
$$f_2$$
 c C f_2 D f_3 CH₃Cl(g) + Cl₂ (g) \Leftrightarrow 2 CH₂Cl₂ (g) + H₂ (g)

$$2 CH_{3}CI(g) + CI_{2}(g) \Rightarrow 2 CH_{2}CI_{2}(g) + H_{2}(g)$$

$$A) K = \frac{[CH_{3}CI]^{1/2}[CI_{2}]}{[CH_{2}CI_{2}]^{1/2}[H_{2}]}$$

$$B) K = \frac{[CH_{2}CI_{2}][H_{2}]}{[CH_{3}CI][CI_{2}]}$$

$$C) K = \frac{[CH_{3}CI][CI_{2}]}{[CH_{2}CI_{2}][H_{2}]}$$

$$D) K = \frac{[CH_{2}CI_{2}]^{2}[H_{2}]}{[CH_{3}CI]^{2}[CI_{2}]}$$

E)
$$K = \frac{[CH_3CI]^2[Cl_2]}{[CH_2Cl_2]^2[H_2]}$$

14) Consider the following reaction at equilibrium. What effect will removing NO2 have on the system?

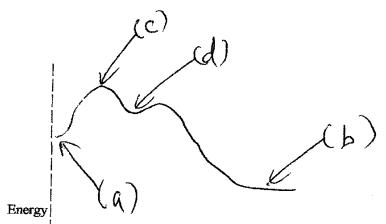
$$SO_2(g) + NO_2(g) = SO_3(g) + NO(g)$$

- A) The reaction will shift in the direction of products.
- B) The reaction will shift in the direction of reactants.
- C) The reaction will shift to decrease the pressure.
- D) No change will occur since SO3 is not included in the equilibrium expression.
- E) The equilibrium constant will decrease.

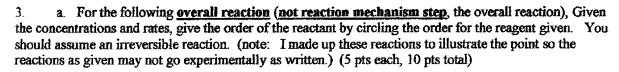
Part II Short Answer: Write the word or phrase or circle the choice that best completes each statement or answers the question. (39 pts)

1. For the following reaction mechanism shown as the elementary reactions given, what is the rate law? (You do not need to show me only reactants of the overall reaction to complete this problem. You do not need to show me the overall reaction to complete this problem.) (The K shown are not equilibrium constants but the rate constants associated with the reaction mechanism steps.) (8 pts)

 \mathbf{K}_1 $H_2O_2 + \Gamma \rightarrow H_2O + IO$ (fast step)

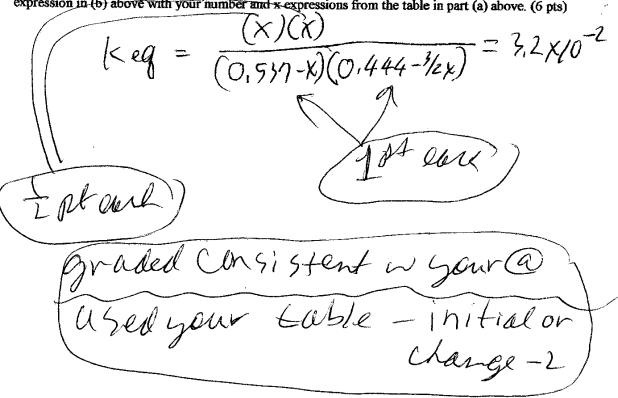

elementary reactions of the proposed mechanism

 $H_2O_2 + IO^- \rightarrow H_2O + O_2 + I^-$


(slow step)

2. For the following energy vs. reaction progress diagram, match the blanks with the (a) reactant (b) product (c) transition state (d) intermediate (Each term may be used once, more than

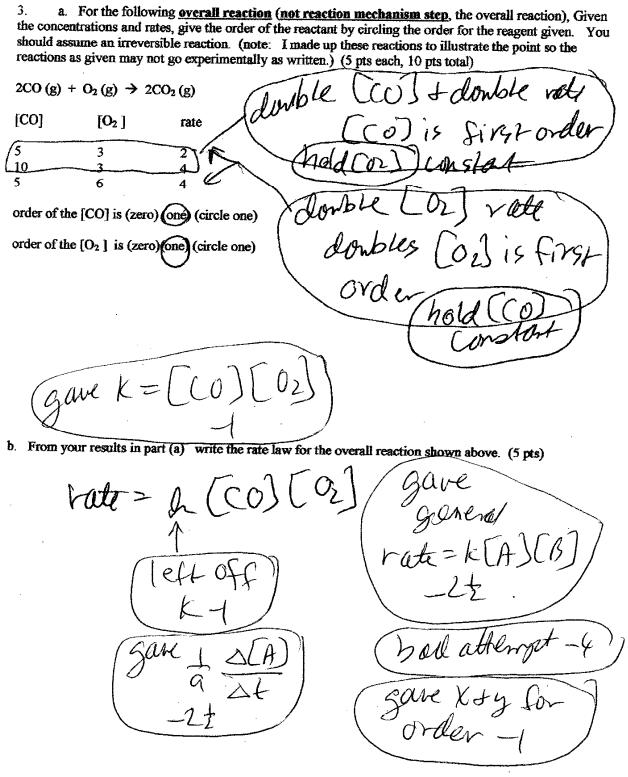
once or not at all) (4 pts each, 16 pts total)


reaction progress

NO ₂ (g	$g) + O_3(g) \rightarrow$	$NO_3(g) + O_2(g)$	g) doubles
[NO ₂]	[O ₃]	rate	(CO3) dage - doubles Trate double
$\begin{pmatrix} 3 \\ 3 \\ 6 \end{pmatrix}$	1 2	8 16 2 8	so first order
order of th	e [NO ₂] is zer	(one) (circle	one)
order of th	e [O ₃] is (zer	ro)(one) (circle o	one) 7 [NOw doubles House-no charge)
			so zero odu

1. If you have a 6.0 Molar solution of H ₂ SO ₄ dissolved in water, how many grams of H ₂ SO ₄ (FW	
98.1 g/mol) is in 73.5 mL of this solution. (15 pts)	Suzide
19.5 ml x 6.0 moles 1250 y 98.1 g tzsous 50 ln 1000 ml H250 y 1 mol 512t) 90 lution 1250 y	down)
50 ln 1000 ml H2584 1 mol	t-22/
(5/2t) golutton 12504	٦
Fall 47.3 g 62504 moth - (2) Equilibrium (18 pts total)	
a. For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a constant volume of an inert solvent with no products present initially: (6 pts total) (I made up the Konumbers so these numbers do not match real reaction results.)	9
$H_2S(g) + 3/2 O_2(g) \rightarrow H_2O(g) + SO_2(g) $ Keq = 3.2 x 10 ⁻²	
If the initial concentration of the H_2S is 0.537 M, and the initial concentration of O_2 is 0.444 M. Show the initial, change and equilibrium concentrations for all reactants and products. You will need to a variable x to complete this task. (x is usually used for the molecule with the smallest coefficient to male this task easier.)	use ce
$[H_2S] \qquad [O_2] \qquad [H_2O] \qquad [SO_2]$	
Initial 0.537 0.444 0	3pt
Change $-\chi$ $-\frac{3}{2}\chi$ $+\chi$ $+\chi$	134
Equilibrium 0.537 - X 0.444 -3/2 X X	J Pa
	•
Eptent (4 ptent)	
(Consistent wyour)	
Dr. Hahn WV by Exam II 9:30 A MWF	6

(pt eal)
b. For the same reaction and the conditions given above, give the expression for the equilibrium constant (K eq) with [concentration of reagent] expressions. To answer this question, you will not be using
any of the results from the table in part (a) above. (6 pts)
Keg = [H20][50z] (Gave rate) [H25][O2]*2
[H25][O2]12
2pt earl
added -()
For the same reaction, set up the K _{eq} to solve for x. I am not asking you to derive the final actual number for x nor am I asking you to do the algebra to solve for x. I am just asking you to plug in for your expression in (b) above with your number and x expressions from the table in part (a) above. (6 pts)
(x)(x)

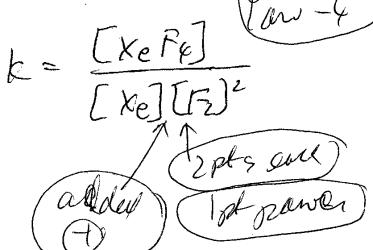

Exam II General Chemistry II (CHEM 102) Form B 3/6/13 9:30 am MWF Dr. Hahn Exam #	MANAGEM
Name(print) Name	(sign)
Please show work for partial credit on the Long Answers and in some of the Short Answer Questions. questions have no partial credit. Please write anything you want graded legibly. If I cannot read cannot grade it. (1 pts print and sign exam)	Multiple choice your work, I obviously
Part I MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answ pts per question, 28 pts pts total)	ers the question. (2
1) Consider the following reaction at equilibrium. What effect will removing NO ₂ have on the system? $V = V \text{ SO}_2(g) + \text{NO}_2(g) \Rightarrow \text{SO}_3(g) + \text{NO}(g)$	1)
 A) The reaction will shift to decrease the pressure. B) No change will occur since SO₃ is not included in the equilibrium expression. C) The reaction will shift in the direction of reactants. D) The reaction will shift in the direction of products. E) The equilibrium constant will decrease. 	
2) Given the following balanced equation, determine the rate of reaction with respect to [NOCI]	l. 2) <u>B</u>
$2 \operatorname{NO}(g) + \operatorname{Cl}_2(g) \rightarrow 2 \operatorname{NOCl}(g)$ $A) \operatorname{Rate} = -\frac{1}{2} \frac{\Delta[\operatorname{NO}]}{\Delta t}$ $C) \operatorname{Rate} = -\frac{1}{2} \frac{\Delta[\operatorname{NOCl}]}{\Delta t}$ $D) \operatorname{Rate} = -\frac{2}{2} \frac{\Delta[\operatorname{NOCl}]}{\Delta t}$ $E) \operatorname{It is not possible to determine without more information.}$	I D , ,
3) Give the term for the amount of solute in moles per liter of solution. A) mass percent B) mole fraction C) mole percent D)molarity E) molality	3)
4) Identify the solute with the highest van't Hoff factor. A) MgCl ₂ - 3 B) MgSO ₄ - 2 C) nonelectrolyte - 1 D) FeCl ₃ - 7 E) NaCl - 2	4)

5) Calculate the molality of a solution formed by dissolving 27.8 g of L	.iI (FW = 133.8 g) in 500.0 mL of 5)
water.	TI (1.44 = 130.0 8) III 900.0 IIII OF 3)
A) 0.254 m (B) 0.415 m (C) 0.556 m (D)	0.394 m E) 0.241 m
6) Express the equilibrium constant for the following reaction. Q A b b c C d D 2 CH ₃ Cl(g) + Cl ₂ (g) ⇔ 2 CH ₂ Cl ₂ (g) + H ₂ (g)	note (27,89/13) D Kg (500ml x 19 x 100
A) $K = \frac{[CH_2Cl_2][H_2]}{[CH_3Cl][Cl_2]}$ $K = \frac{[CH_3Cl][Cl_2]}{[CH_2Cl_2][H_2]}$ $K = \frac{[CH_3Cl][Cl_2]}{[CH_2Cl_2][H_2]}$	kg (500ml x 12 x 10
B) $K = \frac{[CH_3CI][CI_2]}{[CH_2CI_2][H_2]}$ $\left[A\right]^{Q} \left[B\right]^{B}$	700
C) K = $\frac{[CH_3CI]^{1/2}[CI_2]}{[CH_2CI_2]^{1/2}[H_2]}$	
$K = \frac{[CH_2Cl_2]^2[H_2]}{[CH_3Cl]^2[Cl_2]}$	
E) $K = \frac{[CH_3Cl]^2[Cl_2]}{[CH_2Cl_2]^2[H_2]}$	Tvent
7) To make a 2.00 m solution, one could take 2.00 moles of solute and ac A) enough solvent to make 1.00 L of solution. (B) 1.00 kg of solvent. (C) 1.00 L of solvent. (D) enough solvent to make 1.00 kg of solution.	aid $ \begin{array}{c} 7 \\ 8,05 \\ 0.500 \end{array} $ $ \begin{array}{c} (0.51^{2}) & & \\ 0.500 \end{array} $ $ \begin{array}{c} (0.51^{2}) & & \\ 0.500 \end{array} $ $ \begin{array}{c} (0.51^{2}) & & \\ 0.500 \end{array} $ $ \begin{array}{c} (0.51^{2}) & & \\ 0.500 \end{array} $ $ \begin{array}{c} (0.51^{2}) & & \\ 0.500 \end{array} $
8) Calculate the boiling point of a solution of 8.05 moles of ethylene gly water. Δ T _b = K _b *m CH ₄ and K _b = 0.512°C/m. Use 100°C as the back A) 8.3°C B) 130°C C) 92°C D) 10	oiling point of water.
9) Which of the following compounds will be most soluble in ethanol (CA) ethylene glycol (HOCH ₂ CH ₂ OH) B) trimethylamine (N(CH ₃) ₃) C) hexane (CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃) D) acetone (CH ₃ COCH ₃)	, -
E) None of these compounds should be soluble in ethanol.	
10) Give the term for the amount of solute in moles per kilogram of solver A) mole fraction B) mass percent C) molarity D)molality	nt. 10) <u>D</u>
E) mole percent	

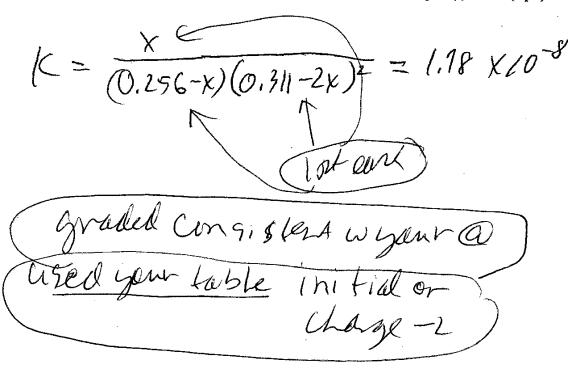
11) Give the characteristic of a zero order reaction having only one reactant.	11)
A) The rate of the reaction is proportional to the natural logarithm of the concentration of the reactant.	
B) The rate of the reaction is not proportional to the concentration of the reactant.	
C) The rate of the reaction is directly proportional to the concentration of the reactant.	•
D) The rate of the reaction is proportional to the square of the concentration of the reactant.	
E) The rate of the reaction is proportional to the square root of the concentration of the reactant.	
12) Which of the following statements is FALCE OF Which of the following statements is FALCE OF OF THE STATE	0
12) Which of the following statements is FALSE (K = equilibrium constant) A) When K >> 1, the forward reaction is favored and essentially goes to consplction.	12) 5
B)K >> 1 implies that the reaction is very fast at producing products.	
C) When K << 1, the reverse reaction is favored and the forward reaction does not proceed to a	
great extent.	
D) When K = 1, neither the forward or reverse reaction is strongly favored, and about the same	
amount of reactants and products exist at equilibrium.	
E) None of the above.	
	0
13) Given the following rate law, how does the rate of reaction change if the concentration of Yill	13) [ζ
doublad?	10) 12
Rate = k [X][Y] A) The rate of reaction will increase by a factor of 4. (B) The rate of reaction will increase by a factor of 2.	
and the second s	
A) The rate of reaction will increase by a factor of 4.	
(B) The rate of reaction will increase by a factor of 2.	
C) The rate of reaction will decrease by a factor of 2.	
D) The rate of reaction will increase by a factor of 5.	
E) The rate of reaction will remain unchanged.	
	À
14) Identify the rate-determining step.	14)
(A) the slowest step	/ <u></u>
B) always the second step	
C) the fast step	
D) always the last step	
E) the faster step	

Part II Short Answer: Write the word or phrase or circle the choice that best completes each statement or answers the question. (39 pts.)

 For the following reaction mechanism shown as the elementary reactions given, what is the rate law? (You do not need to show me only reactants of the overall reaction to complete this problem. You do not need to show me the overall reaction to complete this problem.) (The K shown are not equilibrium constants but the rate constants associated with the reaction mechanism steps.) (8 pts)
K, (-3) gave fast step rate law
Cl ₂ → 2 Cl (fast step) elementary reactions of the proposed mechanism
$Cl + CHCl_3 \rightarrow HCl + CCl_3 (slow step)$ $Cl + CCl_3 \rightarrow CCl_4 (fast step)$ $Cl + CCl_3 \rightarrow CCl_4 (fast step)$
vote = K2 (Ce) (C+U3) gave equilibrium
Teft (ontra)
For the following energy vs. reaction progress diagram, match the blanks with the appropriate terms.
(a) reactant (b) product (c) transition state (d) intermediate (Each term may be used once, more than
once or not at all) (4 pts each, 16 pts total)
(a) (d) (c) (300 [C=[U](C4U)
(c) 3
Energy
reaction progress

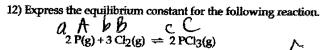

a. For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a constant volume of an inert solvent with <u>no products present initially</u>: (6 pts total) (I made up the K_{eq} numbers so these numbers do not match real reaction results.)

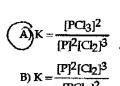
$$Xe(g) + 2F_2(g) \rightarrow XeF_4(g)$$
 Keq = 1.78 x 10⁻⁸

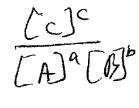

If the initial concentration of the Xe is 0.256 M, and the initial concentration of F_2 is 0.311 M. Show the initial, change and equilibrium concentrations for all reactants and products. You will need to use a variable x to complete this task. (x is usually used for the molecule with the smallest coefficient to make this task easier.)

T 1. 1	[Xe]	[F ₂]	[XeF ₄]	
Initial	0.256	0.311	O	(3pt)
Change	-X	-2x	+ x	
Equilibrium	0.256-X	0.311-2x	Xi	1 (20x)
Con	Gisterit Our wri Worge	wy Ok)	I ph	(Oorl)

b. For the same reaction and the conditions given above, give the expression for the equilibrium constant (K eq) with [concentration of reagent] expressions. To answer this question, you will not be using any of the results from the table in part (a) above. (6 pts)




c. For the same reaction, set up the K_{eq} to solve for x. I am not asking you to derive the final actual number for x nor am I asking you to do the algebra to solve for x. I am just asking you to plug in for your expression in (b) above with your number and x expressions from the table in part (a) above. (6 pts)



Exam II	General Chemistry II (CHEM 102) Form A 3/6/13 11:30 am MWF Dr. Hahn Exam #	
Name	(print) Name	(sign)
questions	now work for partial credit on the Long Answers and in some of the Short Answer Questions. Is have no partial credit. Please write anything you want graded legibly. If I cannot read you rade it. (1 pts print and sign exam)	Multiple choice our work, I obviously
Part I N	MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answer question, 28 pts pts total)	rs the question. (2
-	 Give the characteristic of a zero order reaction having only one reactant. A) The rate of the reaction is directly proportional to the concentration of the reactant. B) The rate of the reaction is not proportional to the concentration of the reactant. C) The rate of the reaction is proportional to the natural logarithm of the concentration of the reactant. D) The rate of the reaction is proportional to the square of the concentration of the reactant. E) The rate of the reaction is proportional to the square root of the concentration of the reactant. 	
2)	Give the term for the amount of solute in moles per kilogram of solvent. A) mole fraction B) mass percent C) mole percent D) molarity E) molality	2)
3)	To make a 2.00 m solution, one could take 2.00 moles of solute and add (A) 1.00 kg of solvent. B) enough solvent to make 1.00 kg of solution. C) enough solvent to make 1.00 L of solution. D) 1.00 L of solvent.	3) <u>A</u> 0,122)
4)	Identify the rate-determining step. A) the fast step B) always the second step C) always the last step D) the faster step E the slowest step $(120)^{2}$ $(136)^{2}$ $(136)^{2}$ $(121)^{2}$	0,45
	Calculate the freezing point of a solution containing 0.067 mol of K Cl and 550.0 grams of water The molal-freezing-point-depression constant (K _f) for water is 1.86°C/m. Δ T $_{\rm f}$ = i * K $_{\rm b}$ * m . Us 0°C as the freezing point of water and assume complete dissociation of the K Cl.	se
6) (A) 1.23 °C B) -0.23 °C C) +0.23 °C D) +0.45 °C E) -0.45 °C C) Give the term for the amount of solute in moles per liter of solution. A) mole percent B) mole fraction C) molality D) mass percent E) molarity	6) <u>E</u>

7) Which of the following compounds will be most soluble in ethanol (CH3CH2OH)? A) acetone (CH3COCH3) (B) ethylene glycol (HOCH2CH2OH)	7) 6
C) hexane (CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃)	
D) trimethylamine (N(CH3)3)	
E) None of these compounds should be soluble in ethanol.	
8) Given the following balanced equation, determine the rate of reaction with respect to $[O_2]$. A (C_1) b (C_2) consists (C_2) consi	8)
$20_{3(g)} - 30_{2(g)}$	EB)
$A) Rate = + \frac{3 \Delta [O_2]}{\Delta t} \qquad rate = -\frac{1}{a} \frac{\Delta (A)}{\Delta t} = +\frac{1}{b} \frac{\Delta}{\Delta}$	
(B) Rate = $+\frac{1}{3} \frac{\Delta[O_2]}{\Delta t}$ (C) Rate = $-\frac{2}{3} \frac{\Delta[O_2]}{\Delta t}$ (D) Rate = $-\frac{2\Delta[O_2]}{\Delta t}$ (E) It is not possible to determine without more information.	
C) Rate = $-\frac{2}{3} \frac{\Delta[O_2]}{\Delta t}$	a-X 1500
D) Rate = $-\frac{2\Delta[O_2]}{\Delta t}$	Inl
E) It is not possible to determine without more information.	1
	\wedge
 Calculate the molality of a solution formed by dissolving 27.8 g of Lil (FW = 133.8 g/mol) in 500.0 ml. of water. 	9)])
A) 0.556 m B) 0.394 m C) 0.254 m D) 0.415 m E) 0.241 m	-
10) Identify the solute with the lowest van't Hoff factor.	10)
A) MgSO ₄ — 2	
B) FeCt34 C) NaCl2	
D) MgCl ₂	
D) MgCl ₂ (B) nonelectrolyte	
1-	
11) Which of the following statements is FALSE? (K = equilibrium constant)	11)
A) When K ≈ 1, neither the forward or reverse reaction is strongly favored, and about the same amount of reactants and products exist at equilibrium.	
B) When K >> 1, the forward reaction is favored/and essentially goes to completion.	
(C) K >> 1 implies that the reaction is very fast af producing products.	
D) When K << 1, the reverse reaction is favored and the forward reaction does not proceed to a great extent.	
to as nothing to	
E) None of the above. has nothing to do with rate	

C)
$$K = \frac{[P][Cl_2]^{3/2}}{[PCl_3]}$$

D)
$$K = \frac{[PCl_3]^{1/2}}{[P]^{1/2}[Cl_2]^{1/3}}$$

E)
$$K = \frac{[PCl_3]}{[P][Cl_2]^{3/2}}$$

13) Consider the following reaction at equilibrium. What effect will adding more H2S have on the Jack drives Ryn-> system?

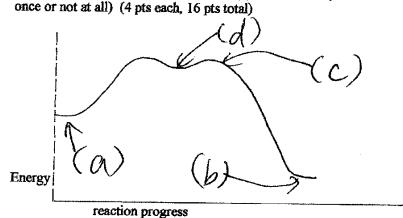
 $2 H_2S(g) + 3 O_2(g) \implies 2 H_2O(g) + 2 SO_2(g)$

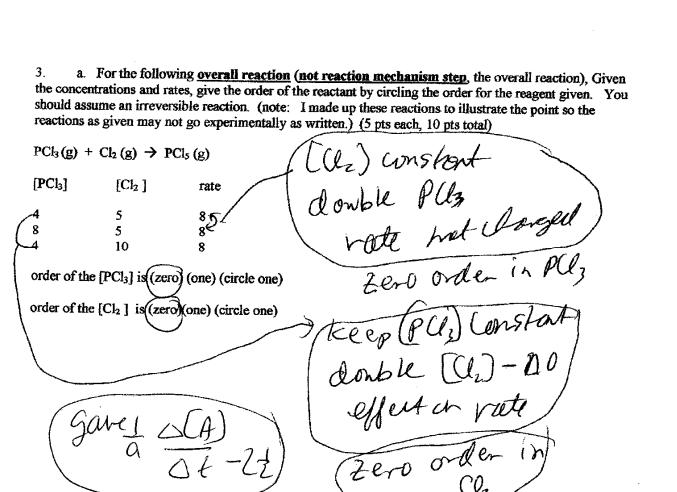
- A) The reaction will shift to the left.
- B) The equilibrium constant will increase.
- The reaction will shift in the direction of products.
- D) The equilibrium constant will decrease.
- E) No change will be observed.
- 14) Given the following rate law, how does the rate of reaction change if the concentration of Y is doubled? 1st order with y

Rate = k[X][Y]

- (A) The rate of reaction will increase by a factor of 2.
- B) The rate of reaction will increase by a factor of 5. C) The rate of reaction will decrease by a factor of 2.
- D) The rate of reaction will increase by a factor of 4.
- E) The rate of reaction will remain unchanged.

Part II Short Answer: Write the word or phrase or circle the choice that best completes each statement or answers the question. (39 pts)


1. For the following reaction mechanism shown as the elementary reactions given, what is the rate law? (You do not need to show me only reactants of the overall reaction to complete this problem. You do not need to show me the overall reaction to complete this problem.) (The K shown are not equilibrium constants but the rate constants associated with the reaction mechanism steps.) (8 pts)


 $NO_2 + NO_2 \rightarrow NO_3 + NO$ (slow step)

elementary reactions of the proposed mechanism

 $NO_3 + CO \rightarrow NO_2 + CO_2$ (fast step)

2. For the following energy vs. reaction progress diagram, match the blanks with the appropriate terms. (a) reactant (b) product (c) transition state (d) intermediate (Each term may be used once, more than

b. From your results in part (a) write the rate law for the overall reaction shown above. (5 pts)

(eft vat = | C (PU2) (U2) (Order)

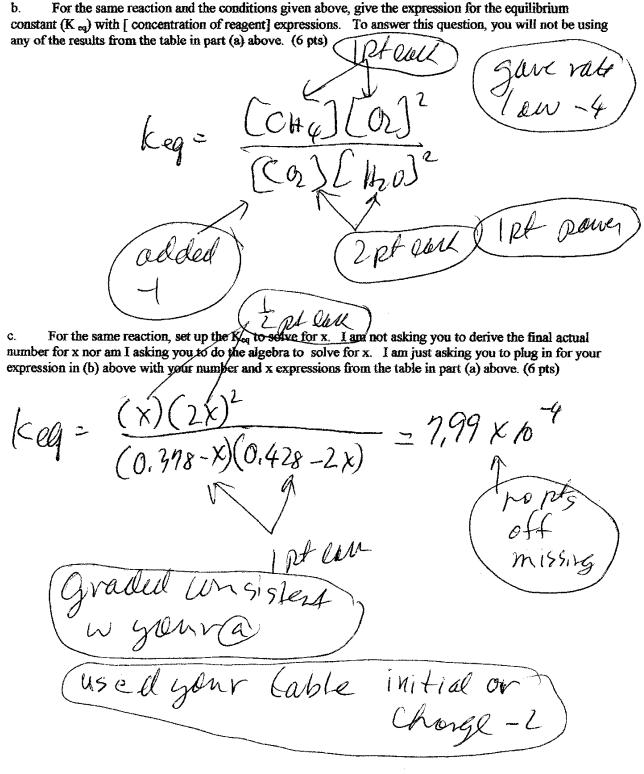
Off | Vat = | Gave X + y | hot |

Vat = | PU3 (U2) |

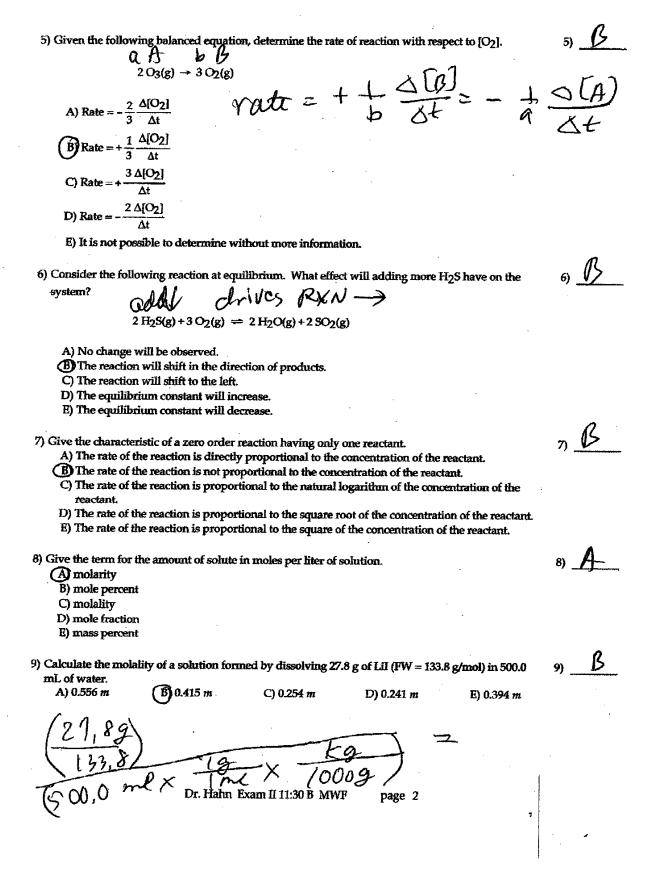
Gave | Vat = | (A) (B) |

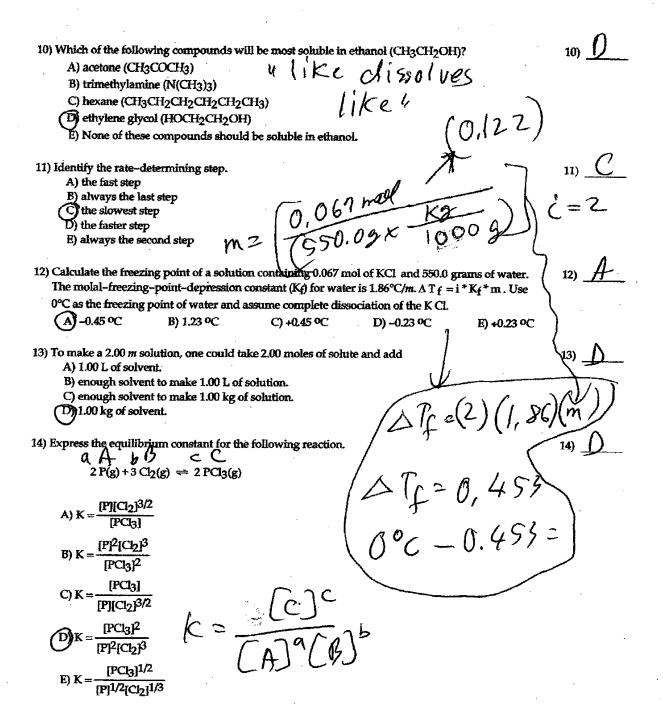
Dr. Hahn

Exam II 11:30 A MWF page 5


If you have a 3.0 Molar solution of HCl dissolved in water, how many grams of HCl (FW = 36.5 g/mol) is in 25.0 mL of this solution. (15 pts) 2. Equilibrium (18 pts total) a. For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a constant volume of an inert solvent with no products present initially: (6 pts total) (I made up the Keq numbers so these numbers do not match real reaction results.) $CO_2(g) + 2H_2O(g) \rightarrow CH_4(g) + 2O_2(g)$ $\text{Keq} = 7.99 \times 10^{-4}$ If the initial concentration of the CO₂ is 0.378 M, and the initial concentration of H₂O is 0.428 M. Show the initial, change and equilibrium concentrations for all reactants and products. You will need to use a variable x to complete this task. (x is usually used for the molecule with the smallest coefficient to make this task easier.) 1 pt east $[CO_2]$ H_2O [CHL Initial Change Equilibrium I pt per box

Exam II 11:30 A MWF

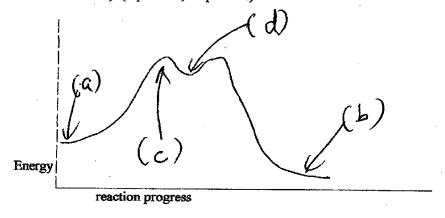

page


6

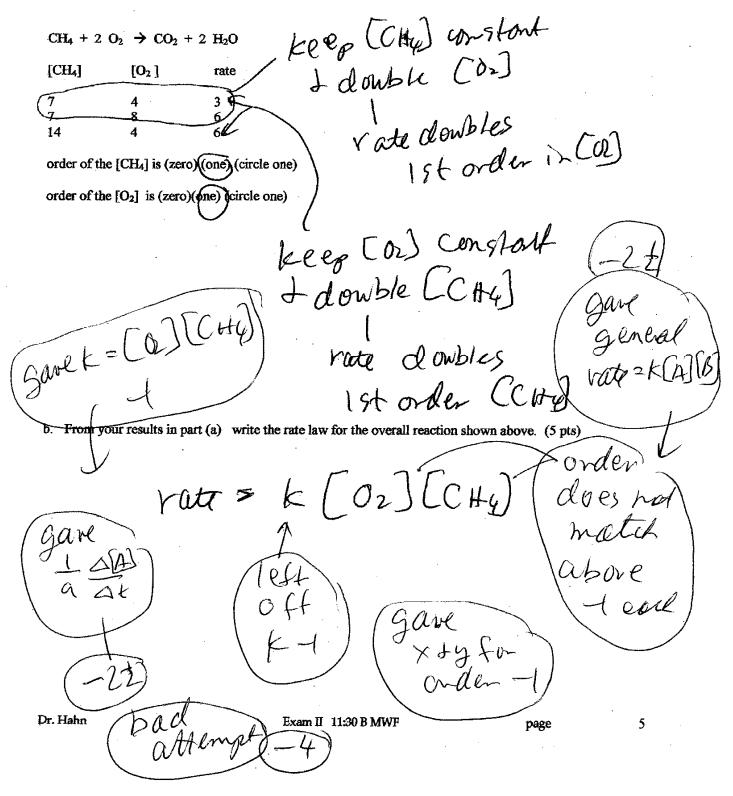
Dr. Hahn

Exam	II General Chemistry II (CHEM 102) Form B 3/6/13 11:30 am MWF Dr. Hahn Exam #	70
Name	(print) Name	(sign)
questi	show work for partial credit on the Long Answers and in some of the Short Answer Questions. Multions have no partial credit. Please write anything you want graded legibly. If I cannot read your wat grade it. (I pts print and sign exam)	
Part I pts pe	MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the r question, 28 pts pts total)	question. (2
	1) Given the following rate law, how does the rate of reaction change if the concentration of Y is doubled? Rate = k [X][Y]	1)
	A) The rate of reaction will increase by a factor of 4. B) The rate of reaction will increase by a factor of 5. C) The rate of reaction will decrease by a factor of 2. D) The rate of reaction will increase by a factor of 2. E) The rate of reaction will remain unchanged.	·
	2) Identify the solute with the lowest van't Hoff factor. A) NaCl B) MgSO ₄ O nonelectrolyte D) MgCl ₂ E) FeCl ₃ 4 AD A A A A A A A A A A A A	2)
	 3) Which of the following statements is FALSE? (K = equilibrium constant) A) When K << 1, the reverse reaction is favored and the forward reaction does not proceed to a great extent. (B) K >> 1 implies that the reaction is very fast at producing products. (C) When K >> 1, the forward reaction is favored and essentially goes to completion. (D) When K ≈ 1, neither the forward or reverse reaction is strongly favored, and about the same amount of reactants and products exist at equilibrium. (E) None of the above. 	3)
	4) Give the term for the amount of solute in moles per kilogram of solvent. A) mass percent B) molality C) mole percent D) molarity E) mole fraction	4) <u>B</u>

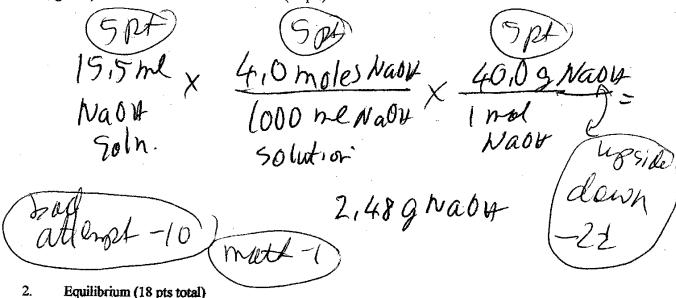
Part II Short Answer: Write the word or phrase or circle the choice that best completes each statement or answers the question. (39 pts)


1. For the following reaction mechanism shown as the elementary reactions given, what is the rate law? (You do not need to show me only reactants of the overall reaction to complete this problem. You do not need to show me the overall reaction to complete this problem.) (The K shown are not equilibrium constants but the rate constants associated with the reaction mechanism steps.)

NO₂+ F₂ \rightarrow NO₂F + F (fast step) F+ NO₂ \rightarrow NO₂F (slow step) Squee fust 5tep rate low elementary reactions of the proposed mechanism with the standard of the proposed mechanism with the proposed mechanism with the standard of the proposed mechanism with the standard of the proposed mechanism with the standard of t

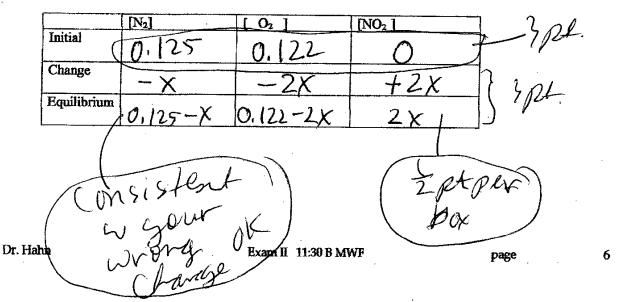

extra Featly wrong -3) bad-6

gave equilibrium/ constant

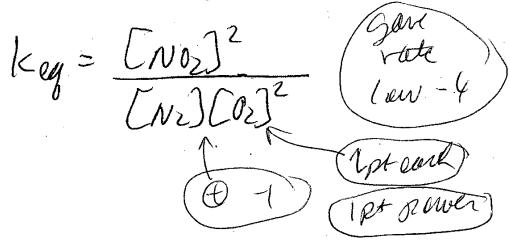

For the following energy vs. reaction progress diagram, match the blanks with the appropriate terms.
 (a) reactant (b) product (c) transition state (d) intermediate (Each term may be used once, more than once or not at all) (4 pts each, 16 pts total)

3. a. For the following <u>overall reaction</u> (<u>not reaction mechanism step</u>, the overall reaction), Given the concentrations and rates, give the order of the reactant by circling the order for the reagent given. You should assume an irreversible reaction. (note: I made up these reactions to illustrate the point so the reactions as given may not go experimentally as written.) (5 pts each, 10 pts total)

1. If you have a 4.0 Molar solution of NaOH dissolved in water, how many grams of NaOH (FW = 40.0 g/mol) is in 15.5 mL of this solution. (15 pts)



a For the reaction given get up the ICE table


a. For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a constant volume of an inert solvent with <u>no products present initially</u>: (6 pts total) (I made up the K_{eq} numbers so these numbers do not match real reaction results.)

$$N_2(g) + 2 O_2(g) \rightarrow 2 NO_2(g)$$
 Keq = 1.8 x 10⁻³

If the initial concentration of the N_2 is 0.125 M, and the initial concentration of O_2 is 0.122 M. Show the initial, change and equilibrium concentrations for all reactants and products. You will need to use a variable x to complete this task. (x is usually used for the molecule with the smallest coefficient to make this task easier.)

b. For the same reaction and the conditions given above, give the expression for the equilibrium constant (K eq) with [concentration of reagent] expressions. To answer this question, you will not be using any of the results from the table in part (a) above. (6 pts)

c. For the same reaction, set up the K_{eq} to solve for x. I am not asking you to derive the final actual number for x nor am I asking you to do the algebra to solve for x. I am just asking you to plug in for your expression in (b) above with your number and x expressions from the table in part (a) above. (6 pts)

Keg =
$$\frac{(2x)^2}{(0.125-x)(0.122-2x)^2} = 1.8 \times 10^{-3}$$

Graded consistent wyour @)
(used your table initialors charge -2)

Name		(print) Name			_(sign)
Please show work for partial questions have no partial cannot grade it. (1 pts prin	redit. Please write	Answers and in some anything you want g	e of the Short Answer raded legibly. If I	Questions. Multi- cannot read your wo	ple choice ork, I obviousl
Part I MULTIPLE CHOI pts per question, 28 pts pt		alternative that best	completes the statem	ent or answers the	question. (2
1) Give the term fo A) mole perce B) molarity C) mole fracti D) mass perce E) molality	on	e in moles per liter of	solution.		1)
A) When K << great exten B) K >> 1 imp C) When K ≈ amount of	olies that the reaction in the state of the forward reactants and productions. In the forward reactions are the state of	on is favored and the is very fast at produc or reverse reaction is ts exist at equilibrium	forward reaction doe ing products. s strongly favored, ar ı.	d about the same	2)
3) Given the follow doubled? Rate = k	ing rate law, how doe $[X][Y]$	es the rate of reaction	change if the concen	tration of Y is	3)
B) The rate of C) The rate of D) The rate of E) The rate of	reaction will increase reaction will decrease reaction will increase reaction will increase reaction will remain t	e by a factor of 2. by a factor of 5. by a factor of 4. unchanged.			0
4) Calculate the mo mL of water. A) 0.241 <i>m</i>	lality of a solution for B) 0.556 m	med by dissolving 2: C) 0.394 m	7.8 g of LiI (FW = 133 D) 0.415 m	.8 g/mol) in 500.0 E) 0.254 m	4)
	ling point of a solutio .b*m CH4 and Kb=		C as the boiling point		5)
A) 92°C	B) 108°C	C) 8.3°C	D) 70°C	E) 130°C	

6) Identify the rate-determining step.	6)	
A) always the last step		
B) the faster step		
C) the slowest step		
D) the fast step		
E) always the second step		
7) Give the term for the amount of solute in moles per kilogram of solvent.	7)	
A) molarity		
B) molality		
C) mass percent		
D) mole fraction		
E) mole percent		
8) Identify the solute with the highest van't Hoff factor.	8)	
A) MgSO $_4$		
B) FeCl ₃		
C) MgCl ₂		
D) NaCl		
E) nonelectrolyte		
9) Give the characteristic of a zero order reaction having only one reactant.	9)	
A) The rate of the reaction is proportional to the square root of the concentration of the reactant.		.,
B) The rate of the reaction is directly proportional to the concentration of the reactant.		
C) The rate of the reaction is not proportional to the concentration of the reactant.		
D) The rate of the reaction is proportional to the natural logarithm of the concentration of the reactant.		
E) The rate of the reaction is proportional to the square of the concentration of the reactant.		
10) Which of the following compounds will be most soluble in ethanol (CH ₃ CH ₂ OH)?	10)	
A) hexane (CH3CH2CH2CH2CH3)		
B) ethylene glycol (HOCH2CH2OH)		
C) trimethylamine (N(CH ₃) ₃)		
D) acetone (CH ₃ COCH ₃)		
E) None of these compounds should be soluble in ethanol.		
11) To make a 2.00 <i>m</i> solution, one could take 2.00 moles of solute and add	111	
A) enough solvent to make 1.00 kg of solution.	11)	
B) 1.00 kg of solvent.		
C) enough solvent to make 1.00 L of solution.		
D) 1.00 L of solvent.		

12) Given the following balanced equation, determine the rate of reaction with respect to [NOCI].

12) _____

$$2 \text{ NO}(g) + \text{Cl}_2(g) \rightarrow 2 \text{ NOCl}(g)$$

A) Rate =
$$\pm \frac{1}{2} \frac{\Delta [\text{NOCl}]}{\Delta t}$$

B) Rate =
$$-\frac{1}{2} \frac{\Delta[NO]}{\Delta t}$$

C) Rate =
$$-\frac{2 \Delta [NOCI]}{\Delta t}$$

D) Rate =
$$-\frac{1}{2} \frac{\Delta [\text{NOCl}]}{\Delta t}$$

E) It is not possible to determine without more information.

13) Express the equilibrium constant for the following reaction.

13) _____

$$2 \text{ CH}_3\text{Cl}(g) + \text{Cl}_2(g) \Leftrightarrow 2 \text{ CH}_2\text{Cl}_2(g) + \text{H}_2(g)$$

A) K =
$$\frac{[\text{CH}_3\text{Cl}]^{1/2}[\text{Cl}_2]}{[\text{CH}_2\text{Cl}_2]^{1/2}[\text{H}_2]}$$

B)
$$K = \frac{[CH_2Cl_2][H_2]}{[CH_3Cl][Cl_2]}$$

C) K =
$$\frac{[CH_3CI][CI_2]}{[CH_2CI_2][H_2]}$$

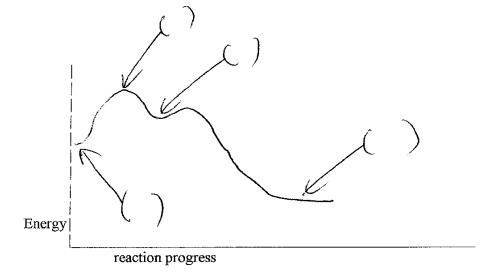
D)
$$K = \frac{[CH_2Cl_2]^2[H_2]}{[CH_3Cl]^2[Cl_2]}$$

E)
$$K = \frac{[CH_3CI]^2[CI_2]}{[CH_2CI_2]^2[H_2]}$$

14) Consider the following reaction at equilibrium. What effect will removing NO₂ have on the system?

$$SO_2(g) + NO_2(g) \Rightarrow SO_3(g) + NO(g)$$

- A) The reaction will shift in the direction of products.
- B) The reaction will shift in the direction of reactants.
- C) The reaction will shift to decrease the pressure.
- D) No change will occur since SO3 is not included in the equilibrium expression.
- E) The equilibrium constant will decrease.


Part II Short Answer: Write the word or phrase or circle the choice that best completes each statement or answers the question. (39 pts)

1. For the following reaction mechanism shown as the elementary reactions given, what is the rate law? (You do not need to show me only reactants of the overall reaction to complete this problem. You do not need to show me the overall reaction to complete this problem.) (The K shown are not equilibrium constants but the rate constants associated with the reaction mechanism steps.) (8 pts)

$$K_1$$

 $H_2O_2 + \Gamma \rightarrow H_2O + IO$ (fast step) elementary reactions of the proposed mechanism

$$H_2O_2 + IO^- \rightarrow H_2O + O_2 + I^-$$
 (slow step)

- 2. For the following energy vs. reaction progress diagram, match the blanks with the appropriate terms.
- (a) reactant (b) product (c) transition state (d) intermediate (Each term may be used once, more than once or not at all) (4 pts each, 16 pts total)

3. a. For the following <u>overall reaction</u> (<u>not reaction mechanism step</u>, the overall reaction), Given the concentrations and rates, give the order of the reactant by circling the order for the reagent given. You should assume an irreversible reaction. (note: I made up these reactions to illustrate the point so the reactions as given may not go experimentally as written.) (5 pts each, 10 pts total)

$$NO_2(g) + O_3(g) \rightarrow NO_3(g) + O_2(g)$$

$[NO_2]$	$[O_3]$	rate
3 3 6	1 2 1	8 16 8
U	1	O

order of the [NO₂] is (zero) (one) (circle one)

order of the [O₃] is (zero)(one) (circle one)

b. From your results in part (a) write the rate law for the overall reaction shown above. (5 pts)

1. If you have a 6.0 Molar solution of H_2SO_4 dissolved in water, how many grams of H_2SO_4 (FW = 98.1 g/mol) is in 73.5 mL of this solution. (15 pts)

2. Equilibrium (18 pts total)

a. For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a constant volume of an inert solvent with <u>no products present initially</u>: (6 pts total) (I made up the K_{eq} numbers so these numbers do not match real reaction results.)

$$H_2S(g) + 3/2 O_2(g) \rightarrow H_2O(g) + SO_2(g)$$
 Keq = 3.2 x 10⁻²

If the initial concentration of the H_2S is 0.537 M, and the initial concentration of O_2 is 0.444 M. Show the initial, change and equilibrium concentrations for all reactants and products. You will need to use a variable x to complete this task. (x is usually used for the molecule with the smallest coefficient to make this task easier.)

	[H ₂ S]	[O ₂]	[H ₂ O]	[SO ₂]
Initial				
Classia				
Change				
Equilibrium				

b. For the same reaction and the conditions given above, give the expression for the equilibrium constant (K_{eq}) with [concentration of reagent] expressions. To answer this question, you will not be using any of the results from the table in part (a) above. (6 pts)
For the same reaction, set up the K_{eq} to solve for x. I am not asking you to derive the final actual number for x nor am I asking you to do the algebra to solve for x. I am just asking you to plug in for your expression in (b) above with your number and x expressions from the table in part (a) above. (6 pts)

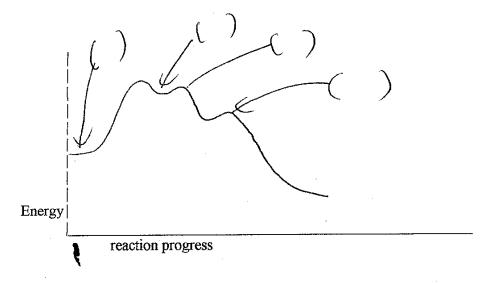
Name_	(print) Name	(sign)
puestic	show work for partial credit on the Long Answers and in some of the Short Answer Questions. Muons have no partial credit. Please write anything you want graded legibly. If I cannot read your grade it. (1 pts print and sign exam)	ltiple choice work, I obviously
	MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question, 28 pts pts total)	he question. (2
	1) Consider the following reaction at equilibrium. What effect will removing NO ₂ have on the system?	1)
	$SO_2(g) + NO_2(g) \Rightarrow SO_3(g) + NO(g)$	
	 A) The reaction will shift to decrease the pressure. B) No change will occur since SO₃ is not included in the equilibrium expression. C) The reaction will shift in the direction of reactants. D) The reaction will shift in the direction of products. E) The equilibrium constant will decrease. 	
	2) Given the following balanced equation, determine the rate of reaction with respect to [NOCl].	2)
	$2 \text{ NO(g)} + \text{Cl}_2(g) \rightarrow 2 \text{ NOCl}(g)$	
	A) Rate = $-\frac{1}{2} \frac{\Delta[NO]}{\Delta t}$	
	B) Rate = $+\frac{1}{2} \frac{\Delta [\text{NOCl}]}{\Delta t}$ C) Rate = $-\frac{1}{2} \frac{\Delta [\text{NOCl}]}{\Delta t}$	
	D) Rate = $-\frac{2 \Delta [NOCI]}{\Delta t}$	
	E) It is not possible to determine without more information.	
	 3) Give the term for the amount of solute in moles per liter of solution. A) mass percent B) mole fraction C) mole percent D) molarity E) molality 	3)
	4) Identify the solute with the highest van't Hoff factor. A) MgCl ₂ B) MgSO ₄ C) nonelectrolyte D) FeCl ₃ E) NaCl	4)

5) Calculate the molality of a solution formed by dissolving 27.8 g of LiI (FW = 133.8 g) in 500.0 mL of					5)		
water. A) 0.254 m	!	B) 0.415 m	C) 0.556 m	D) 0.394 m	E) 0.241 m		
6) Express the equilibrium constant for the following reaction.							
2 CF	13Cl(g) -	$+Cl_2(g) \Leftrightarrow 2CH$	$I_2Cl_2(g) + H_2(g)$				
A) $K = \frac{[C]}{[C]}$	H ₂ Cl ₂][I H ₃ Cl][C	H ₂]					
B) $K = \frac{C}{C}$	H ₃ Cl][C H ₂ Cl ₂][I	1 _{2]} 1 _{2]}					
C) $K = \frac{[C]}{[C]}$	H ₃ Cl] ^{1/2} H ₂ Cl ₂] ^{1/}	² [Cl ₂] ² [H ₂]					
D) $K = \frac{C}{C}$	H ₂ Cl ₂] ² H ₃ Cl] ² [([H ₂] [l ₂]					
E) $K = \frac{[C]}{[C]}$	H3CI] ² [0 H2Cl2] ² [Cl ₂] [H ₂]					
A) enough B) 1.00 kg C) 1.00 L c	solvent of solver of solvent	to make 1.00 L of nt.		ite and add		7)	
				ylene glycol dissolve Cas the boiling point		8)	
A) 8.3°C		B) 130°C	C) 92°C	D) 108°C	E) 70°C		
A) ethylen B) trimeth C) hexane D) acetone	e glycol (ylamine (CH3CH (CH3CO	(HOCH ₂ CH ₂ OH (N(CH ₃)3) I ₂ CH ₂ CH ₂ CH ₂ C OCH ₃)	()	ethanol (CH3CH2OH))?	9)	
10) Give the term A) mole from B) mass per C) molarit D) molality E) mole per	ercent y	amount of solute	in moles per kilogran	n of solvent.		10)	

11) Give the characteristic of a zero order reaction having only one reactant.	11)
A) The rate of the reaction is proportional to the natural logarithm of the concentration of the reactant.	
B) The rate of the reaction is not proportional to the concentration of the reactant.	
C) The rate of the reaction is directly proportional to the concentration of the reactant.	
D) The rate of the reaction is proportional to the square of the concentration of the reactant.	
E) The rate of the reaction is proportional to the square root of the concentration of the reactant.	
12) Which of the following statements is FALSE? (K = equilibrium constant)	12)
A) When $K \gg 1$, the forward reaction is favored and essentially goes to completion.	
B) $K \gg 1$ implies that the reaction is very fast at producing products.	
C) When K << 1, the reverse reaction is favored and the forward reaction does not proceed to a great extent.	
D) When $K \approx 1$, neither the forward or reverse reaction is strongly favored, and about the same	
amount of reactants and products exist at equilibrium.	
E) None of the above.	
13) Given the following rate law, how does the rate of reaction change if the concentration of Y is	13)
doubled?	
Rate = $k[X][Y]$	
A) The rate of reaction will increase by a factor of 4.	
B) The rate of reaction will increase by a factor of 2.	
C) The rate of reaction will decrease by a factor of 2.	
D) The rate of reaction will increase by a factor of 5.	
E) The rate of reaction will remain unchanged.	
14) Identify the rate-determining step.	14)
A) the slowest step	
B) always the second step	
C) the fast step	
D) always the last step	
E) the faster step	

Part II Short Answer: Write the word or phrase or circle the choice that best completes each statement or answers the question. (39 pts)

1. For the following reaction mechanism shown as the elementary reactions given, what is the rate law? (You do not need to show me only reactants of the overall reaction to complete this problem. You do not need to show me the overall reaction to complete this problem.) (The K shown are not equilibrium constants but the rate constants associated with the reaction mechanism steps.) (8 pts)


elementary reactions of the proposed mechanism

$$Cl_2 \xrightarrow{K_1} 2 Cl$$
 (fast step)

 $Cl + CHCl_3 \xrightarrow{K_2} HCl + CCl_3$ (slow step)

 $Cl + CCl_3 \xrightarrow{K_3} CCl_4$ (fast step)

- 2. For the following energy vs. reaction progress diagram, match the blanks with the appropriate terms.
- (a) reactant (b) product (c) transition state (d) intermediate (Each term may be used once, more than once or not at all) (4 pts each, 16 pts total)

3. a. For the following <u>overall reaction</u> (<u>not reaction mechanism step</u>, the overall reaction), Given the concentrations and rates, give the order of the reactant by circling the order for the reagent given. You should assume an irreversible reaction. (note: I made up these reactions to illustrate the point so the reactions as given may not go experimentally as written.) (5 pts each, 10 pts total)

$$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$$

[CO]	$[O_2]$	rate
5	3	2
10	3	4
5	6	4

order of the [CO] is (zero) (one) (circle one)

order of the [O₂] is (zero)(one) (circle one)

b. From your results in part (a) write the rate law for the overall reaction shown above. (5 pts)

Part III. Long Answer Please show work for full credit and to receive partial credit. (33 pts)

1. If you have a 12.0 Molar solution of KOH dissolved in water, how many grams of KOH (FW = 56.1 g/mol) is in 38.9 mL of this solution. (15 pts)

2. Equilibrium (18 pts total)

a. For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a constant volume of an inert solvent with <u>no products present initially</u>: (6 pts total) (I made up the K_{eq} numbers so these numbers do not match real reaction results.)

$$Xe(g) + 2F_2(g) \rightarrow XeF_4(g)$$

$$Keq = 1.78 \times 10^{-8}$$

If the initial concentration of the Xe is 0.256 M, and the initial concentration of F_2 is 0.311 M. Show the initial, change and equilibrium concentrations for all reactants and products. You will need to use a variable x to complete this task. (x is usually used for the molecule with the smallest coefficient to make this task easier.)

	[Xe]	[F ₂]	[XeF ₄]
Initial			
Change			
Equilibrium			·

6

b. For the same reaction and the conditions given above, give the expression for the equilibrium constant (K_{eq}) with [concentration of reagent] expressions. To answer this question, you will not be using any of the results from the table in part (a) above. (6 pts)

c. For the same reaction, set up the K_{eq} to solve for x. I am not asking you to derive the final actual number for x nor am I asking you to do the algebra to solve for x. I am just asking you to plug in for your expression in (b) above with your number and x expressions from the table in part (a) above. (6 pts)

Name	(print) Name	_(sign)
_l uestion	how work for partial credit on the Long Answers and in some of the Short Answer Questions. Multipus have no partial credit. Please write anything you want graded legibly. If I cannot read your work and it. (1 pts print and sign exam)	
	MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question, 28 pts pts total)	question. (2
1	 I) Give the characteristic of a zero order reaction having only one reactant. A) The rate of the reaction is directly proportional to the concentration of the reactant. B) The rate of the reaction is not proportional to the concentration of the reactant. C) The rate of the reaction is proportional to the natural logarithm of the concentration of the reactant. D) The rate of the reaction is proportional to the square of the concentration of the reactant. 	1)
	E) The rate of the reaction is proportional to the square root of the concentration of the reactant.	
2	P) Give the term for the amount of solute in moles per kilogram of solvent. A) mole fraction B) mass percent C) mole percent D) molarity E) molality	2)
3	 To make a 2.00 m solution, one could take 2.00 moles of solute and add A) 1.00 kg of solvent. B) enough solvent to make 1.00 kg of solution. C) enough solvent to make 1.00 L of solution. D) 1.00 L of solvent. 	3)
4) Identify the rate-determining step. A) the fast step B) always the second step C) always the last step D) the faster step E) the slowest step	4)
5)	Calculate the freezing point of a solution containing 0.067 mol of K Cl and 550.0 grams of water. The molal-freezing-point-depression constant (K_f) for water is 1.86°C/ m . Δ T $_f$ = i * K_b * m . Use 0°C as the freezing point of water and assume complete dissociation of the K Cl. A) 1.23 °C B) -0.23 °C C) +0.23 °C D) +0.45 °C E) -0.45 °C	5)
6)	Give the term for the amount of solute in moles per liter of solution. A) mole percent B) mole fraction C) molality D) mass percent E) molarity	6)

7) Which of the follo	wing compounds wi	ll be most soluble in	ethanol (CH3CH2OF	I)?	7)
A) acetone (CH	ІзСОСН3)				
B) ethylene gly	rcol (HOCH2CH2OH	()			
	3CH2CH2CH2CH2C				
D) trimethylan		37			
•	se compounds should	l he soluble in ethanc	.1		
E) None of the	oc compounds snould	r be bordbie ar eduzie	,,,		
8) Given the following	ng balanced equation	, determine the rate	of reaction with respe	ect to [O ₂].	8)
2	$2 O_3(g) \rightarrow 3 O_2(g)$				
A) Rate = $+\frac{3\Delta}{4}$	[O ₂]				
B) Rate = $+\frac{1}{3}$	Δ[O ₂] Δt				
C) Rate = $-\frac{2}{3}$	$\frac{\Delta[O_2]}{\Delta t}$				
2 Δ	.[O ₂]				
D) Rate = $-\frac{2\Delta}{4}$	\(\frac{t}{\Delta t}\)				
E) It is not poss	sible to determine wit	hout more informati	on.		
9) Calculate the male	ality of a solution for	med by dissolving 27	$8 \sigma \text{ of I iI (FW = 133)}$	8 g/mol) in 500 0	9)
mL of water.	anty of a solution for	area by ansorving 27	.0 g 01 LH (1 // 100.	o grinory in coole	· ,
A) 0.556 m	B) 0.394 m	C) 0.254 m	D) 0.415 m	E) 0.241 m	
,	,	•	·		
10) Identify the solute	with the lowest van'	t Hoff factor.			10)
A) MgSO ₄					
B) FeCl ₃					
C) NaCl					
D) MgCl ₂					
E) nonelectroly	te				
11) Which of the follo					11)
	neither the forward or eactants and products			d about the same	
	l, the forward reaction			letion.	
	es that the reaction is				
D) When K << 1 great extent.	l, the reverse reaction	is favored and the fo	orward reaction does	not proceed to a	
E) None of the a					

12) Express the equilibrium constant for the following reaction.

$$2 P(g) + 3 Cl_2(g) \implies 2 PCl_3(g)$$

A) K =
$$\frac{[PCl_3]^2}{[P]^2[Cl_2]^3}$$

B) K =
$$\frac{[P]^2[Cl_2]^3}{[PCl_3]^2}$$

C) K =
$$\frac{[P][Cl_2]^{3/2}}{[PCl_3]}$$

D) K =
$$\frac{[PCl_3]^{1/2}}{[P]^{1/2}[Cl_2]^{1/3}}$$

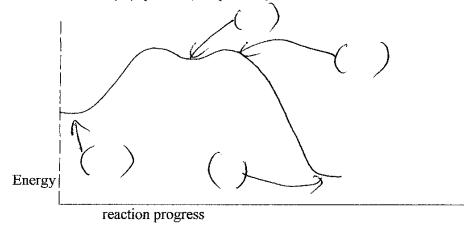
E) K =
$$\frac{[PCl_3]}{[P][Cl_2]^{3/2}}$$

13) Consider the following reaction at equilibrium. What effect will adding more H₂S have on the system?

$$2 H_2S(g) + 3 O_2(g) \implies 2 H_2O(g) + 2 SO_2(g)$$

- A) The reaction will shift to the left.
- B) The equilibrium constant will increase.
- C) The reaction will shift in the direction of products.
- D) The equilibrium constant will decrease.
- E) No change will be observed.
- 14) Given the following rate law, how does the rate of reaction change if the concentration of Y is doubled?

Rate =
$$k[X][Y]$$


- A) The rate of reaction will increase by a factor of 2.
- B) The rate of reaction will increase by a factor of 5.
- C) The rate of reaction will decrease by a factor of 2.
- D) The rate of reaction will increase by a factor of 4.
- E) The rate of reaction will remain unchanged.

Part II Short Answer: Write the word or phrase or circle the choice that best completes each statement or answers the question. $(39 \, \text{pts})$

1. For the following reaction mechanism shown as the elementary reactions given, what is the rate law? (You do not need to show me only reactants of the overall reaction to complete this problem. You do not need to show me the overall reaction to complete this problem.) (The K shown are not equilibrium constants but the rate constants associated with the reaction mechanism steps.) (8 pts)

$$NO_2 + NO_2 \xrightarrow{K_1} NO_3 + NO$$
 (slow step) elementary reactions of the proposed mechanism
$$K_2$$
 $NO_3 + CO \xrightarrow{} NO_2 + CO_2$ (fast step)

- 2. For the following energy vs. reaction progress diagram, match the blanks with the appropriate terms.
- (a) reactant (b) product (c) transition state (d) intermediate (Each term may be used once, more than once or not at all) (4 pts each, 16 pts total)

3. a. For the following <u>overall reaction</u> (<u>not reaction mechanism step</u>, the overall reaction), Given the concentrations and rates, give the order of the reactant by circling the order for the reagent given. You should assume an irreversible reaction. (note: I made up these reactions to illustrate the point so the reactions as given may not go experimentally as written.) (5 pts each, 10 pts total)

$$PCl_3(g) + Cl_2(g) \rightarrow PCl_5(g)$$

[PCl ₃]	$[Cl_2]$	rate
4	5	8
8	5	8
4	10	8

order of the [PCl₃] is (zero) (one) (circle one)

order of the [Cl₂] is (zero)(one) (circle one)

b. From your results in part (a) write the rate law for the overall reaction shown above. (5 pts)

Part III. Long Answer Please show work for full credit and to receive partial credit. (33 pts)

1. If you have a 3.0 Molar solution of HCl dissolved in water, how many grams of HCl (FW = 36.5 g/mol) is in 25.0 mL of this solution. (15 pts)

2. Equilibrium (18 pts total)

a. For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a constant volume of an inert solvent with no products present initially: (6 pts total) (I made up the K_{eq} numbers so these numbers do not match real reaction results.)

$$CO_2(g) + 2H_2O(g) \rightarrow CH_4(g) + 2O_2(g)$$
 Keq = 7.99 x 10^{-4}

If the initial concentration of the CO_2 is 0.378 M, and the initial concentration of H_2O is 0.428 M. Show the initial, change and equilibrium concentrations for all reactants and products. You will need to use a variable x to complete this task. (x is usually used for the molecule with the smallest coefficient to make this task easier.)

	[CO ₂]	[H ₂ O]	[CH ₄]	$[O_2]$	
Initial					
Change					
Equilibrium					

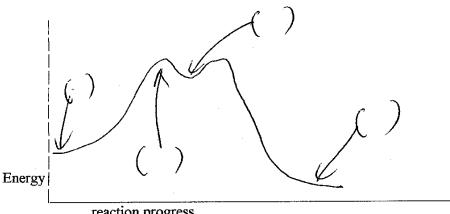
	nt (K eq) with [conce	on and the conditions gentration of reagent] extable in part (a) above.	pressions. To	ve the expression answer this ques	for the equilibrium tion, you will not be	: using
C.	For the same reaction	on, set up the K _{eq} to sol ng you to do the algebr	lve for x. I am	not asking you to	o derive the final act	ual
		ng you to do the algeor				your

Name_	(print) Name	_(sign)
questio	show work for partial credit on the Long Answers and in some of the Short Answer Questions. Multipons have no partial credit. Please write anything you want graded legibly. If I cannot read your work grade it. (1 pts print and sign exam)	ple choice ork, I obviously
	MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question, 28 pts pts total)	question. (2
	1) Given the following rate law, how does the rate of reaction change if the concentration of Y is doubled?	1)
	Rate = k [X][Y]	
	A) The rate of reaction will increase by a factor of 4.B) The rate of reaction will increase by a factor of 5.C) The rate of reaction will decrease by a factor of 2.D) The rate of reaction will increase by a factor of 2.E) The rate of reaction will remain unchanged.	
	2) Identify the solute with the lowest van't Hoff factor. A) NaCl B) MgSO ₄ C) nonelectrolyte D) MgCl ₂ E) FeCl ₃	2)
	 3) Which of the following statements is FALSE? (K = equilibrium constant) A) When K << 1, the reverse reaction is favored and the forward reaction does not proceed to a great extent. B) K >> 1 implies that the reaction is very fast at producing products. C) When K >> 1, the forward reaction is favored and essentially goes to completion. D) When K ≈ 1, neither the forward or reverse reaction is strongly favored, and about the same amount of reactants and products exist at equilibrium. E) None of the above. 	3)
	 4) Give the term for the amount of solute in moles per kilogram of solvent. A) mass percent B) molality C) mole percent D) molarity E) mole fraction 	4)

5) Given the followin	g balanced equation,	determine the rate of	f reaction with respec	t to [O ₂].	5)
2	$O_3(g) \rightarrow 3 O_2(g)$				
A) Rate = $-\frac{2}{3}\frac{\Delta}{2}$	[O ₂]				
_					
B) Rate = $+\frac{1}{3}\frac{\Delta}{}$	Δt				
C) Rate = $+\frac{3\Delta}{\Delta}$	[O ₂]				
D) Rate = $-\frac{2\Delta \Delta}{\Delta}$	[O ₂]				
	ible to determine with	nout more informati	on.		
6) Consider the follo	wing reaction at equi	librium. What effect	will adding more H ₂	S have on the	6)
system?		•			
		0.TT 0/ \ / 0.CO /-	`		
2	$H_2S(g) + 3 O_2(g) \rightleftharpoons$	2 H ₂ O(g) + 2 5O ₂ (g)		
A) No change w	zill be observed.				
B) The reaction	will shift in the direc	tion of products.			
	will shift to the left.	•			
	ium constant will inci	rease.			
	ium constant will dec				
7) Cive the character	istic of a zero order re	eaction having only	one reactant.	÷	7)
A) The rate of the	ne reaction is directly	proportional to the	concentration of the re	eactant.	
B) The rate of the	ne reaction is not pro	portional to the conc	entration of the reacta	nt.	
C) The rate of the reactant.	ne reaction is proport	ional to the natural l	ogarithm of the conce	ntration of the	
D) The rate of th	ne reaction is proport	ional to the square r	oot of the concentration	n of the reactant.	
E) The rate of the	ne reaction is proport	ional to the square o	f the concentration of	the reactant.	
8) Cive the term for t	the amount of solute i	in moles per liter of :	solution.		8)
A) molarity					
B) mole percen	t ·				
C) molality					
D) mole fraction	n				
E) mass percen	t				
9) Calculate the mole	ality of a solution for	ned by dissolving 27	7.8 g of LiI (FW = 133.8	8 g/mol) in 500.0	9)
mL of water.			J ,		
A) 0.556 m	B) 0.415 m	C) 0.254 m	D) 0.241 m	E) 0.394 m	

10) Which of the follow	ving compounds will	l be most soluble in et	hanol (CH3CH2OH)	?	10)
A) acetone (CH3					
B) trimethylamin	ne (N(CH3)3)				
C) hexane (CH30	CH2CH2CH2CH2C	H3)			
D) ethylene glyc	ol (HOCH2CH2OH))			
E) None of these	compounds should	be soluble in ethanol.			
an Tilouiko do este de	etermining ston				11)
 Identify the rate-dead A) the fast step 	eternuimig step.				/
B) always the last	st step				
C) the slowest st					
D) the faster step					
E) always the se	cond step				
12) Calculate the freezi	ing point of a solutio	on containing 0.067 mo	l of KCl and 550.0 g	rams of water.	12)
The molal-freezing	g-point-depression of	constant (K _f) for water	is 1.86 °C/m. Δ T $_{\rm f}$ =	i*K _f *m.Use	-
0°C as the freezing	point of water and a	ssume complete disso	ciation of the K Cl.		
A) -0.45 °C	B) 1.23 °C	C) +0.45 °C	D) -0.23 °C	E) +0.23 °C	
13) To make a 2.00 <i>m</i> s	abilian ana could ta	to 2 00 males of solut	e and add		13)
A) 1.00 L of solve		Ke 2.00 Hioles of soluti	curia acce		,
	nt to make 1.00 L of	solution.			
C) enough solve	nt to make 1.00 kg o	f solution.			
D) 1.00 kg of solv					
14) Express the equilib	rium constant for the	e following reaction.			14)
14) Express the equino	THIS CONSTANT FOR UN	e lonowing reaction.			,
2 P(g) + 3 Q	$Cl_2(g) \Rightarrow 2 PCl_3(g)$				
marcal 12	u/o				
A) K = $\frac{[P][Cl_2]^3}{[PCl_3]}$					
B) $K = \frac{[P]^2[Cl_2]}{[PCl_3]^2}$	3 				
$^{\text{D}}$ $^{\text{R}}$ $^{\text{PCl}_3]^2}$					
C) K = $\frac{[PCl_3]}{[P][Cl_2]^3}$					
D) $K = \frac{[PCl_3]^2}{[P]^2[Cl_2]}$	<u></u>				
[P] ² [Cl ₂]	3				
[PCl ₃]	1/2				
E) $K = \frac{[PCl_3]^2}{[P]^{1/2}[Cl_3]}$	2] ^{1/3}				

Part II Short Answer: Write the word or phrase or circle the choice that best completes each statement or answers the question. (39 pts)


1. For the following reaction mechanism shown as the elementary reactions given, what is the rate law? (You do not need to show me only reactants of the overall reaction to complete this problem. You do not need to show me the overall reaction to complete this problem.) (The K shown are not equilibrium constants but the rate constants associated with the reaction mechanism steps.) (8 pts)

$$NO_2 + F_2 \rightarrow NO_2F + F \text{ (fast step)}$$

elementary reactions of the proposed mechanism

 K_2 F+ NO₂ \rightarrow NO₂F (slow step)

- 2. For the following energy vs. reaction progress diagram, match the blanks with the appropriate terms.
- (a) reactant (b) product (c) transition state (d) intermediate (Each term may be used once, more than once or not at all) (4 pts each, 16 pts total)

reaction progress

a. For the following <u>overall reaction</u> (<u>not reaction mechanism step</u>, the overall reaction), Given the concentrations and rates, give the order of the reactant by circling the order for the reagent given. You should assume an irreversible reaction. (note: I made up these reactions to illustrate the point so the reactions as given may not go experimentally as written.) (5 pts each, 10 pts total)

$$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$$

[CH ₄]	$[O_2]$	rate
7	4	3
7	8	6
14	4	6

order of the [CH₄] is (zero) (one) (circle one)

order of the [O₂] is (zero)(one) (circle one)

b. From your results in part (a) write the rate law for the overall reaction shown above. (5 pts)

Part III. Long Answer Please show work for full credit and to receive partial credit. (33 pts)

1. If you have a 4.0 Molar solution of NaOH dissolved in water, how many grams of NaOH (FW = 40.0 g/mol) is in 15.5 mL of this solution. (15 pts)

2. Equilibrium (18 pts total)

a. For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a constant volume of an inert solvent with **no products present initially**: (6 pts total) (I made up the K_{eq} numbers so these numbers do not match real reaction results.)

$$N_2(g) + 2 O_2(g) \rightarrow 2 NO_2(g)$$

$$Keq = 1.8 \times 10^{-3}$$

If the initial concentration of the N_2 is 0.125 M, and the initial concentration of O_2 is 0.122 M. Show the initial, change and equilibrium concentrations for all reactants and products. You will need to use a variable x to complete this task. (x is usually used for the molecule with the smallest coefficient to make this task easier.)

	[N ₂]	[O ₂]	[NO ₂]	
Initial				
Change				
Equilibrium				,,,,,,,,,,,,,

b. For the same reaction and the conditions given above, give the expression for the equilibrium constant (K eq) with [concentration of reagent] expressions. To answer this question, you will not be using any of the results from the table in part (a) above. (6 pts)

c. For the same reaction, set up the K_{eq} to solve for x. I am not asking you to derive the final actual number for x nor am I asking you to do the algebra to solve for x. I am just asking you to plug in for your expression in (b) above with your number and x expressions from the table in part (a) above. (6 pts)

Dr. Hahn