고 있는 생생님이 있는 것이 되었다. 그는 것이 되었다. 그는 것이 되었다는 것이 되었다는 것이 되었다는 것이 되었다는 것이 되었다. 그는 것이 되었다는 것이 되었다는 것이 되었다. 그는 사람들은 사람들은 그는 것이 되었다는 것이 되었다면 되었다면 되었다면 되었다면 되었다면 되었다면 되었다면 되었다면
Quiz III General Chemistry II Lecture B Dr. Hahn 20 pts 2/20/13 W 9:30 am quiz #
Name (print) Name (sign)
Please show all work for full credit & to get partial credit. (suggestion: A guess is better than no answer.)
1. How many grams of KI is dissolved in 30.5 mL of a 0.255 M water solution? (FW KI = 165.9)
g/mol) (6 pts) (2pt) (math 1)
105 mex 0.27 March x 165,99 KZ 21,299
1005 ml x 0.295 molkI x 165,99 kI = 1,299 1000 mlkI ImalkI kI
2. In freezing point depression and boiling point elevation, if you use Mg Cl ₂ as the dissolved
substance, assuming complete dissociation, what is the i (Van't Hoff factor)? (3 pts)
my Cl2 -) mg +2 Cl 3 particles
3. For the following reaction mechanism shown as the elementary reactions given, what is the rate law? (You do not need to show me only reactants of the overall reaction to complete this problem. You do
not need to show me the overall reaction to complete this problem.) (5 pts)
$Br_2 \xrightarrow{k_1} 2 Br$ fast elementary reactions of the proposed reaction mechanism $-\frac{k_1}{2}$
Br + H2 HBr + H slow Vate = h2 (h2)
$H + Br_2 \rightarrow HBr + Br fast$
Br + H ₂ \rightarrow HBr + H slow rate = h ₂ (hr) (H ₂) H + Br ₂ \rightarrow HBr + Br fast \rightarrow rate from the 5/000 step rate law is only from the 5/000 step
(vato fa-a)/orallRy 1 27) (added -2)
Cole of or all the second
4. For the following energy vs. reaction progress diagram, match the blanks with the appropriate terms. (a) reactant (b) product (c) transition state (d) intermediate (Each term may be used once, more than
once or not at all) (6 pts)
sout)
(rate 2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1
() () () () () () () () () ()
$Energy$ (a) $A \leftarrow A \leftarrow A \rightarrow $
reaction progress
Extra Credit: For the reaction shown, what is the rate of the reaction written in the form $\Delta [A]/\Delta t$ for
the molecule CO ₂ Don't forget the correct sign of the equation. (3 pts)
$2 \operatorname{COF}_2 \to \operatorname{CO}_2 + \operatorname{CF}_4 \qquad \qquad \operatorname{rate} = \qquad + \left(\begin{array}{c} + \\ - \end{array} \right) $
wrong molecule - 12) (A &
(or general & SA)

Quiz III General Chemistry II Lecture A Dr. Hahn 20 pts 2/20/13 W 11:30 am quiz #
Name (print) Name (pad other pt -4) (sign)
Name (print) Name (sign) Please show all work for full credit & to get partial credit. (suggestion: A guess is better than po answer.)
mash 1) (20t) X2pt)
1. What is the molality of a solution made by dissolving 22.7 grams of ethanol (FW ethanol = 46.08
g/mol) in 355 grams of water (assume density water = 1.00 g/1.00 mL)? (6 pts)
molality = $\frac{1}{160000}$ to $\frac{1}{1600000}$ $\frac{1}{160000000000000000000000000000000000$
2. In freezing point depression and boiling point elevation, if you use Ca (OA)2 as the dissolved
substance, assuming complete dissociation, what is the i (Van't Hoff factor)? (3 pts)
Ca(OH)2 -> Ca+2+2OH 3 particles (2PA)
3. For the following reaction mechanism shown as the elementary reactions given, what is the rate law? (You do not need to show me only reactants of the overall reaction to complete this problem. You do
not need to show me the overall reaction to complete this problem) (5 pts)
$I_2 \rightarrow 2I$ fast bad attempt elementary reactions of the proposed reaction mechanism
vates backs
$H_2 + 2I \stackrel{?}{\underset{\sim}{\longrightarrow}} 2HI \text{ slow} \qquad Vate > ln_2 (-ln_2) (-$
only rate detarning step determines rate (only rate detarning step (vote for overall RXN-21)
That for Overest 7 22
4. For the following energy vs. reaction progress diagram, match the blanks with the appropriate terms.(a) reactant (b) product (c) transition state (d) intermediate (Each term may be used once, more than
once or not at all) (6 pts) $(aA + bB \rightarrow CC + dD)$
(aft + bir / Clauf
200) () (A) - (A) - (A)
ant d (roue a to b st
150 - LACO - LACO
1 - C st dat
Energy
reaction progress
Extra Credit: For the reaction shown, what is the rate of the reaction written in the form $\Delta [A]/\Delta t$ for
the molecule BrNO Don't forget the correct sign of the equation. (3 pts)
$2 \text{ BrNO} \rightarrow 2 \text{ NO} + \text{Br}_2$ rate = (- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
(I) YOU LOCA)
(# -1) (a Oi)

Quiz III	General Chemistry II	Lecture B Dr.	Hahn 20 pts	2/20/13 W 11:	30 am quiz#	<u> </u>
Name	Key	6	print) Name			(sign)
	how all work for full c	redit,& to get parti	al credit. (sug	gestion: A gues	s is better than no a	
1 1	What is the molarity of	then -	v dissolving 78	7 grams of met	hanol (FW methano	ol = 32.05
_	g/mol) in 355 grams (of water (assume	density water =	1.00 g / 1.00 ml	(6 pts)	en e
M = :	# moles some	te) s#moly	es = 18.1.	$g \times \frac{1 \text{ mos}}{21 \text{ ac}}$	≤ 2.46	mdes
	Eggsolvert	/ 11 (2pt)]	クレレフ	2 16 1	reon
#100	$= 3553 \times $ In freezing point depre	10000	= 0.100 K	8 M=	2146mole	26.43 m
7 2. 2	In freezing point depre	ession and boiling	point elevation,	if you use Ca C	l ₂ as the dissolved	substance,
	assuming complete disa				pts)	
	all -					
e i di	For the following react You do not need to she	MALE TO TAKE THE RESERVE AND THE			-	1.0
	not need to show me th		もがた たんない アー・ス・アナイだい こうごうしん			
$O + N_2$	NO + N slow	elementary rea	ctions of the pro	posed/reaction	mechanism	
Cl + F	$I_2 \rightarrow HCl + H fast$) 100to =	0. F	375 M	7 (bad	-3)
(4) (4)	~	100			att	empt)
Vat	$\begin{array}{c} $	y deple	ds or	510w.	stop -	
(YOUR DON ON	10NUV PXY	ルーレン			
4. I	For the following energy eactant (b) product (c)	y vs. reaction prog	gress diagram, n			
	once or not at all) (6 pt	<u>s)</u> . •	/	(at + b	- 71	~ ^ ^
	12 ptem	$\frac{1}{2}$	9		[A]	rav
egreen.		The T	$\overline{}$ \mathcal{A}_{0}	Vote 2	1 2(A)	-494
		レギ		Λ		5 DE
				\2	<u> </u>	, <u>ala</u>
		V. Tr	3)		· Dt o	126/
	Energy (Q)		-) -2		>	
	reaction	progress				
- 10 0 0	a Credit: For the react nolecule NO Don't			tion (3 pts)	in the form $\Delta [A]$	I /Δ1 for
2 Br	$NO \rightarrow 2 NO + Br_2/$	wrung	rate = (구쇳	$\frac{N_0}{2}$	of which
		#1/				()
		ノン		11/1	· //a7 /	
				(12/a		
4.23			turk Mily			

Quiz III	General Chemistry II Lecture A	Dr. Hahn	20 pts	2/20/13 W	9:30 am	quiz # <u> </u>
•	-					

Name ______(print) Name ______(sign)

Please show all work for full credit & to get partial credit. (suggestion: A guess is better than no answer.)

- 1. How many grams of NaCl is dissolved in 30.5 mL of a 0.100 M water solution? (FW NaCl = 58.5 g/mol) (6 pts)
- 2. In freezing point depression and boiling point elevation, if you use FeCl₃ as the dissolved substance, assuming complete dissociation, what is the i (Van't Hoff factor)? (3 pts)
- 3. For the following reaction mechanism shown as the elementary reactions given, what is the rate law? (You do not need to show me only reactants of the overall reaction to complete this problem. You do not need to show me the overall reaction to complete this problem.) (5 pts)

$$C1 + O_3 \rightarrow C1O + O_2$$

$$C1O + O \rightarrow C1 + O_2$$

$$K_2$$

fast step elementary reactions of the proposed mechanism slow step

4. For the following energy vs. reaction progress diagram, match the blanks with the appropriate terms.
(a) reactant (b) product (c) transition state (d) intermediate (Each term may be used once, more than once or not at all) (6 pts)

Extra Credit: For the reaction shown, what is the rate of the reaction written in the form $\Delta [A]/\Delta t$ for the molecule COF_2 Don't forget the correct sign of the equation. (3 pts)

$$2 \text{ COF}_2 \rightarrow \text{ CO}_2 + \text{ CF}_4$$

Name Please show all work for full	(print) Name credit & to get partial credit. (suggestion: A gue	(sign) (ss is better than no answer)
1. How many grams of g/mol) (6 pts)	KI is dissolved in 30.5 mL of a 0.255 M water so	olution? (FW KI = 165.9
2. In freezing point dep substance, assuming	ression and boiling point elevation, if you use Months of the Months of	g Cl ₂ as the dissolved ctor)? (3 pts)
(You do not need to s not need to show me	ction mechanism shown as the elementary reaction how me only reactants of the overall reaction to complete this problem.) (5	omplete this problem. You do pts)
Br₂ ≯ 2 Br ← k -1	fast elementary reactions of the proposed reacti	on mechanism
Ka Ka		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	fast	
4. For the following energy (a) reactant (b) product (once or not at all) (6	ergy vs. reaction progress diagram, match the blank c) transition state (d) intermediate (Each term may pts)	cs with the appropriate terms. y be used once, more than

Extra Credit: For the reaction shown, what is the rate of the reaction written in the form $\Delta [A]/\Delta t$ for the molecule CO_2 Don't forget the correct sign of the equation. (3 pts)

 $2 \text{ COF}_2 \rightarrow \text{ CO}_2 + \text{ CF}_4$

rate = ______

	General Chemistry II							
Name			(print) N	lame			(sign)	
Please sh	ow all work for full cre	edit & to get p	artial credit	t. (sugg	gestion: A	guess is be	etter than no answer.)	
1. V	What is the molality of a /mol) in 355 grams of	solution mad	e by dissol	ving 22.	7 grams of	ethanol (F	W ethanol = 46.08	
2. I	in freezing point depres abstance, assuming cor	ssion and boili nplete dissocia	ng point ele tion, what	evation, is the i (if you use (Van't Hof	Ca (OH) ₂ f factor) ?	as the dissolved (3 pts)	
n	or the following reaction You do not need to shout to shout to show me the	w me only rea	ctants of th	e overal	l reaction	to complete	n, what is the rate law e this problem. You do	?
$I_2 \stackrel{5}{\Rightarrow} 2I$	fast	ele	nentary rea	ections o	f the prope	sed reaction	on mechanism	
- K-1			,					
•								
$H_2 + 2$	I → 2 HI slow							
	-1							
(a) r	for the following energy eactant (b) product (c) or not at all) (6 pts)	y vs. reaction transition state	orogress dia (d) interm	agram, r nediate (natch the b Each term	olanks with may be use	the appropriate terms ed once, more than	ļ.
r	Zm omous l							
£	Energy	:						
	reaction	progress						
	,							
	a Credit: For the react nolecule BrNO	ion shown, wh Don't forget t	nat is the rather the correct :	te of the sign of t	reaction whe equation	vritten in th n. (3 pts)	the form $\Delta[A]/\Delta t$ for	T
2 Br	$NO \rightarrow 2NO + Br_2$		rate	e =				

.

- 1. What is the molality of a solution made by dissolving 78.7 grams of methanol (FW methanol = 32.05 g/mol) in 355 grams of water (assume density water = 1.00 g/1.00 mL)? (6 pts)
- 2. In freezing point depression and boiling point elevation, if you use Ca Cl₂ as the dissolved substance, assuming complete dissociation, what is the i (Van't Hoff factor)? (3 pts) _____
- 3. For the following reaction mechanism shown as the elementary reactions given, what is the rate law? (You do not need to show me only reactants of the overall reaction to complete this problem. You do not need to show me the overall reaction to complete this problem.) (5 pts)

$$O + N_2 \xrightarrow{k} NO + N$$
 slow elementary reactions of the proposed reaction mechanism $C1 + H_2 \xrightarrow{k} HC1 + H$ fast

- 4. For the following energy vs. reaction progress diagram, match the blanks with the appropriate terms.
- (a) reactant (b) product (c) transition state (d) intermediate (Each term may be used once, more than once or not at all) (6 pts)

Extra Credit: For the reaction shown, what is the rate of the reaction written in the form $\Delta [A] / \Delta t$ for the molecule **NO** Don't forget the correct sign of the equation. (3 pts)

 $2 \text{ BrNO} \rightarrow 2 \text{ NO} + \text{Br}_2$

rate =		