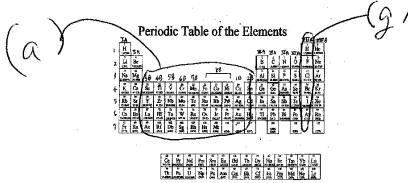

Final	General Chemistry I	Lecture Fall	2013 12/6/	/13 F 9:30 A	Dr. Hahn	Exam # _	
Name_	Key		(print) N	ame	gve	en	(sign)
Multip work, l of the	show work for partia le choice questions ha obviously cannot g	al credit and full cre ave no partial cred rade it. (1 pts prin me where the rem	edit on the Long it. Please write t and sign exam)	Answers and in e anything you If you run o	some of the want graded out of space,	Short Answ legibly. I please conti	er Questions.
If you	are a graduating sen	ior, please write gr	aduating senior l	here			
	MULTIPLE CHOIC		ne alternative tha	at best complet	es the staten	nent or ansv	vers the question. (2
							. 0
	1) What is the maxi A) 5	mum number of p B) 9	orbitals that are C) 7	possible?	3	E) 1	1) <u> </u>
	2) Uosa manus salam	بطدماء مسمستمراء مم		?			n A
	2) How many valer (A) 7	B) 6	c naiogens posses C) 5	D)	1	E) 2	2)/
	3) Identify the speci A) neutral C) anion	ies that has the sm	allest radius (size	e). B) cation D) they are a	ll the same si	ze	3) <u>B</u>
	4) TATL - 1 1 - 1 :		641032				a R
	4) What symbol is u A) n	B k	ki(0	C) M	I	Ο) μ	4)
	5) If the melting point 273.15)	int of vanadium m	etal is 1910°C, wl	hat is its melting	; point in Kel	vin? (K = °C	C+ 5) <u>A</u>
	A) 2183 K	(910 + 21)	7K 73.15 = 7	C) 3470 K	I	O) 1029 K	
		pound with covale B) Kr	nt bonds.	ות	NaCl	€) СН.	6)
	ionic	Clemb	4 elen	next i	onic		
	7) Choose the bond A) C-F	below that is <u>least</u> B) C-Br			C-I	E) (1 - (7)
	8) The number of cy A) wavelength B) median C) area D) amplitude E) frequency	-	ugh a stationary	point is called			8)

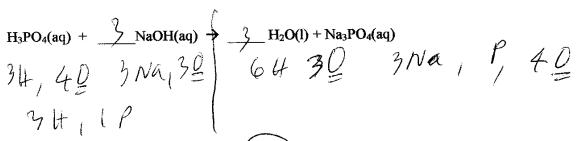


17) Describe the shape	e of a n orbital.				17) B
A) spherical					
(B) dumbbell sh	aped				
three balls	•				
D) eight balls					
E) four balls					
18) Which of the follo	wing colutions will b	ave the highest con	contration of chloride	ions?	18) A
			centration of chiloride	101131	10,
A) 0.10 W AICE	$\frac{3 \leftarrow 0, (0 \times 3)}{12}$	a 10V2	(U17)		
B) 0.10 M MgC	12 ~	VIIVE			
C) 0.10 M LiCi	-0.10	10. 2 0	1.7		
D) 0.05 M CaCl	2 0.	05 E (= 0	IV		
E) All of these	solutions have the sa	me concentration of	t chloride ions.		
19) A triple covalent b	ond contains	of electrons.			19)
A) 2 pairs	B) 0 pairs	C) 1 pair	(D)3 pairs	E) 4 pairs	,
11) = Passo	2) · F	-, - _F	O 1	, 1	<i>(</i> -
20) Choose the eleme	nt from the list below	√.		- 1	20)
A) Na Cl	B) Fe ₂ O ₃	C) H ₂ O ₂	D) H ₂ O	(E) He	
21) How many H+ ion	ns can the acid, H2S(O4 , donate per mol	ecule?		21) <u>A</u>
(A) 2	B) 1	C) (D) 3	
\cup	•	·			Λ
22) Identify the numb	er of electron groups	around a molecule	with a trigonal bipy	amidal shape.	22)
(\widehat{A}) 5	B) 4	C) 2	D) 1	E) 3	· _
\cup	an v	<u>^</u> \$			
	gen	/			

Part II Short Answer: Write the word or phrase or circle the choice that best completes each statement or answers the question. Some questions may require that you show work. If you do not show work, you may lose points. Even on questions which do not require work, if you legibly show work, you may get some partial credit. (81 pts)

1.	(6 pts total) One mole of the element Mg has 6,02 x 10 (1 pt) (gi	ive a
	number) of atoms and weighs 24,7 (2 pts) grams	
	one mole of the molecule Na ₂ SO ₄ has $\frac{23}{100}$ (1 pt) molecule and weigh	s
	(2 pts) grams (show work)	
	2(23.00) + 32.0 + 4(16.0) = 142	
	Na	

- 2. (14 pts total) (1) Match the following words by inputting the letter associated with the word into the parenthesis given. Do not make up your own parenthesis. Each parenthesis should have a single letter matching the parenthesis. You may use each word given one time, many times or not at all. (8 pts, 4 pts each)
 - (a) Transition metal element (b) main group element (c) lanthanide / actinides (d) alkali metals (e) alkaline earth metals (f) chalcogen (g) halogen (i) noble gases


(2) How do you decide which is the more electronegative element? (you would want to say something about across period and down group or something comparable) (3 pts)

F is most electron egative (less

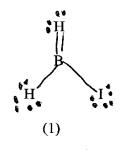
(3) How do you decide which is the larger atom (larger radius atom)? (you would want to say something about across period and down group or something comparable) (3 pts)

-> site decruses) (Size increases)

Balance the following reaction by filling in the blank with a number. The number may be the number one or any other number. The parts without a blank do not need any numbers input to balance the equation. (8 pts, 4 pts each)

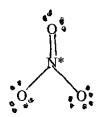
(a) The following molecule is [(soluble) or (insoluble)] (circle one) in water. (6 pts) Ca(NO₃)₂

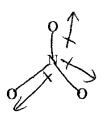
(b) Give two statements from the solubility chart to explain your answer. (2 pts)


For the following redox reaction, fill in the parenthesis by the reagent with either the letter (a) or (b). 5 (a) is being oxidized (b) is being reduced (6 pts)

Ox state
$$Zn(s) + 2$$
 AgNO₃ (aq) \Rightarrow $Zn(NO_3)_2$ (aq) $+ 2$ Ag (s)
 $Zn = zero$ Ag = +1 $Zn = +2$ Ag = $zero$

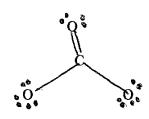
Give the Lewis Dot Symbol for the element As Make sure the dots are clearly visible. (6 pts)

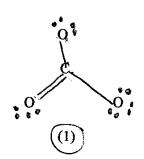

- 7. Lewis Dot Structure (9 pts total)
 - (a) The number of valence electrons in H_2BI is ______ Show work for full credit. (6 pts)

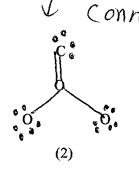

(b) Which of the two Lewis Dot structures is the correct structure [(1) or (2)] (circle one) (3 pts)

12 x2 = 24 € Coording € H has more than duet

Complete the following VSEPRT chart for the Lewis Dot structure shown.




line-dash-wedge drawing above


Answer the following questions about the atom with the * (2 pts each, 18 pts)

- What is the geometry of the electron pairs? $\frac{trigonal}{trigonal}$ pyramidal What is the geometry of the molecule? $\frac{trigonal}{trigonal}$ pyramidal What is the hybridization $\frac{trigonal}{trigonal}$ f What is are the hond angle $\frac{120^{\circ}}{trigonal}$ d. What is the geometry of the molecule?
- $\frac{5}{5}$ f. What is, are the bond angle What is the hybridization _
- g. For the bond, show the polarity symbol as an arrow or with the symbol δ

- h. Draw in the vector arrows for the molecule above in the line- wedge- dash drawing.
- i. The above molecule as a whole is [(polar) or (honpolar)] (circle one)
- For the molecule shown below, which of the two structures is a resonance structure? Circle either [(1) or (2)] (6 pts)

Part III. Long Answer Please show work for full credit and to receive partial credit. (73 pts) **** Please attempt every problem for partial credit. You will get no partial credit if you just rewrite the question with no change in anything.****

1. Convert the following using dimensional analysis. Show work. If you come up with the final correct numerical answer but show no work, you will lose all points. (25 pts total)

 $\text{Li}_2S(aq) + \text{Co}(NO_3)_2(aq) \rightarrow 2 \text{Li}NO_3(aq) + \text{CoS}(s)$ the reaction is (1) less (0(NO3)_2 So limiting

(a) If you have 0.355 kilograms of Li₂S (molar mass of Li₂S = 45.95 g/mol) and 4.55 moles of Co(NO₃)₂, which is the limiting reagent?

{ [Li₂S] or $(Co(NO_3)_2)$ }(circle one) Explain & show work. (5 pts)

0.355 kg x 1000g Lis x mol Lis = 7.73 mol Lis Lis = 1.73 mol Lis 49.95g = 1.73 mol Lis

(b) What is the theoretical yield (based on the mass or moles of the Li₂S regardless of the mass or moles of the limiting reagent) of the Li NO₃ in grams (molar mass of LiNO₃ = 68.94 g/mol)? (20 pts)

0.355 kg x 1000 glizs x molliss Lizs 1 kg 45,959 Lizs Cizs

× 2mol LiNO3 × 68.949 Lind3 = 1 mol Lizs 4: NO3

1065.23g LiND3 -> 1,07×103g LiND3 W correct Sig sig 2. If you have 1.55 moles of a gas at temperature of 303.2 K occupying a volume of 2.82 liters, what is the pressure? [PV = nRT, R=0.08206 (L atm)/(mol K)] (I made up these numbers so the numbers have no relation to reality.) (show work) (20 pts)

N = 1.55 nol T = 303, 2K V = 2.82 l $P = nRT \longrightarrow P(2.82l) = (.55 \text{ mol})(0.08206)(303)$ $P = \frac{nRT}{V}$ $P = (1.55 \text{ nol})(0.08206 \frac{latm}{mex})(303.2K)$ (2.82k)

9= 13,7 atm

3. Using the periodic table, for the element (28 pts total, 2 pts each blank) Sn
(a) give: atomic mass 118,71 amu atomic number 50 (4 pts)
(b) number of protons 50 number of electrons 50 number of neutrons 69 (Explain & show work for above in the space below if needed for partial credit) (8 pts) $7 - 50 = 68.7$
(c) How many valence electrons does the element have? $\frac{4}{4}$ (4 pts) Explain how you know. Gray $= IVA$ Valence $= 4$
(d) What is the group number for the element (2 pts) [use the exact number (arabic #, roman #, letter or whatever) given in the periodic table attached to this exam]
(e) What is the charge on the element in its ionic form? $\frac{140}{40}$ (Explain & show work below if necessary) (4 pts) If the element forms an 1 Dh it would be either $\frac{140}{40}$ Cither $\frac{140}{40}$ Co get an out it
(f) How many total electrons does the ionic form of the element have? $\frac{54}{6}$ (Explain & show work below) (4 pts)
(g) Give the Lewis Dot Symbol for the neutral element. (2 pts)
Dr. Hahn General Chemistry I Lecture Final Exam 9A Fall 2013 page 10

	General Chemistry I Lectu Key		12/6/13 F 9:30 B D		(sign)
ivame _.	rug	· · · · · · · · · · · · · · · · · · ·	iiii) Name	. M	(Sign)
Multip work, of the	show work for partial cred ble choice questions have no I obviously cannot grade it exam and clearly tell me wl	partial credit. Please t. (1 pts print and sign here the remaining ans	e write anything you war exam) — If you-run out o	nt graded legibly. If I ca of space , please continue	nnot read your on the back page
= T ₁ /T	2 Avogadro's number = 6	.022 x 10 ²³			
If you	are a graduating senior, pl	ease write graduating s	enior here		1
	MULTIPLE CHOICE. Cl r question, 44 pts pts total)		ive that best completes t	he statement or answers	the question. (2
			ata nar malagula?		1)
	1) How many H+ ions can (A) 2	B) 1	C) 0	D) 3	1)/
	2) Which of the following (A) 0.10 M AlCl3	solutions will have the	highest concentration of	chloride ions? 9	2)
	B) 0.10 M LiCl C) 0.10 M MgCl ₂				
	D) 0.05 M CaCl ₂	one have the came con	centration of chloride ion	e	
	L) All of these sold	ons have the same con-	centration of Guoriae for		
	3) Choose the element from				3)
	A) Fe ₂ O ₃	B) H ₂ O ₂ C)) H ₂ O D) Na	Cl E) He	
	4) Ions differ in the numb	er of			4) _/+
	(A) electrons.				
	B) neutrons. C) protons.				
	D) neutrons and pro	tons.			
	E) electrons and pro				
	5) Which compound has	the highest carboncark	on hand strength?		5) A
	(A) HC≅CH	are ingress curbon curi	B) CH ₃ CH ₃		J
	C) CH ₂ =CH ₂		·	gths are the same	
	6) What symbol is used to	raprocent the factor 10	n32		6)
		B) n	C) M	(D) k	0)
	Α) μ	<i>D)</i> 11	C) IVI	(b) x	_
	7) If the melting point of 273.15)	vanadium metal is 1910	°C, what is its melting po	oint in Kelvin? ($K = {}^{O}C +$	7)
	A) 3470 K	B) 1637 K	(C) 2183 K	D) 1029 K	
			_		

Final

Fall I 2013

9:30 form B

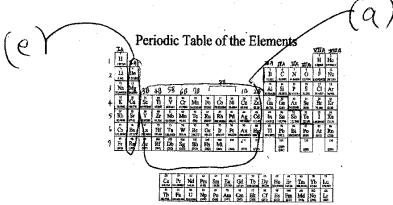
page

1

Dr. Hahn General Chemistry I Lecture

A) frequen B) wavelei C) area	ngth	gh a stationary point	is called		8)
D) amplitu E) median					
9) Calculate the	molar mass for Mg(ClO	4)2-			9) <u>D</u>
A) 123.76 g	-				
B) 119.52 g	-				
C) 75.76 g/ D) 223.21 و					
E) 247.52 g					
10) How many si	ignificant figures are in 0	.00523980mL?			10)
A) 4	B) 3	C) 6	D) 7	E) 5	
					R
	naximum number of p or			E\ 1	11)
A) 7	B) 3	C) 9	D) 5	E) 1	
12) Identify a cati	ion.				12) A
	n that has lost an electro	n.			12,
	n that has gained an elec				
	n that has lost a proton a n that has gained a neut				
D) All alon	ii iilai iias gameu a neui.	on.			
13) A triple coval	ent bond contains	of electrons.			13) A
A) 3 pairs	B) 0 pairs	C) 1 pair	D) 2 pairs	E) 4 pairs	- /-/-
14) 7475-1	. 1 1	1			0
	on below represents the <u>e</u> · Li ⁺ (g) + e ⁻	electron affinity of I	.1?		14)
	e ⁻ → Li ⁻ (g)				
	$e^- \rightarrow Li^+(g)$				
D) Li ⁺ (g) +					
E) Li ⁺ (g) −	→ Li(g) + e ⁻				
15) Identify the si	pecies that has the small	est radius (size)			15) B
A) neutral	podios triat kino tric siridir	, ,	cation		10)
C) anion			hey are all the same s	size	
16) 11-	-I 1 a 1				0
A) 2	alence electrons do the h B) 1	alogens possess? C) 7	D) 6	E) 5	16)
, -	2) 1	<i>C)</i> .	2) 0	E) 3	
17) Choose the bo	ond below that is <u>least</u> po	olar.			17) C
A) P-F	B) C-I	9 U-U	D) C-Br	E) C-F	17) <u>C</u> 18) <u>A</u>
10\					. A.
A) 5	umber of electron group B) 2	around a molecule C) 1			18)
21,0	·		D) 3	E) 4	
	Pa	ivs			
Dr. Hahn	General Chemistry I I	ecture Final Fall	2013 9:30	form B page	2

19) What is the empirical formula for Hg2(NO3)2?								
A) Hg2(NO ₃)2							
B) Hg2NO3								
C) Hg(NO ₃) ₂								
D) Hg4(NO3)4							
E) HgNO3								
20) Identify the compound with covalent bonds.								
A) Kr	B) KBr	C) NaCl	D) Li	E) CH ₄	20)			
21) Determine the o	oxidation state of P in	PO ₃ 3			21) A			
A) +3	B) 0	C) +6	D) +2	E) -3	, <u>,</u>			
22) Describe the shape of a p orbital.								
A) spherical								
B) three balls	l .							


C) eight ballsD) four balls

E) dumbbell shaped

Part II Short Answer: Write the word or phrase or circle the choice that best completes each statement or answers the question. Some questions may require that you show work. If you do not show work, you may lose points. Even on questions which do not require work, if you legibly show work, you may get some partial credit. (81 pts)

- 1. (6 pts total) One mole of the element Br has 6.02×10^{-2} (1 pt) (give a number) of atoms and weighs 9.9×10^{-2} (2 pts) grams one mole of the molecule 6.02×10^{-2} (1 pt) molecule and weighs 2.12×10^{-2} (2 pts) grams (show work below) 6.00×10^{-2} (2 pts) grams (show work below) 6.00×10^{-2} (2 pts) 6.00×10^{-2}
- 2. (14 pts total) (1) Match the following words by inputting the letter associated with the word into the parenthesis given. Do not make up your own parenthesis. Each parenthesis should have a single letter matching the parenthesis. You may use each word given one time, many times or not at all. (8 pts, 4 pts each)

(a) Transition metal element (b) main group element (c) lanthanide / actinides (d) alkali metals (e) alkaline earth metals (f) chalcogen (g) halogen (i) noble gases

(2) How do you decide which is the more electronegative element? (you would want to say something about across period and down group or something comparable) (3 pts)

F is most electroneyative

(3) How do you decide which is the larger atom (larger radius atom)? (you would want to say something about across period and down group or something comparable) (3 pts)

) size decreases) (size increases)

3. Balance the following reaction by filling in the blank with a number. The number may be the number one or any other number. The parts without a blank do not need any numbers input to balance the equation. (8 pts, 4 pts each)

$$TiO_{2}(s) + 2C(s) \rightarrow 1$$
 $Ti(s) + 2 CO(g)$
 $1T_{1}, 2Q \rightarrow 1$ $1T_{1}, 2Q \rightarrow 2Q$
 $2Q$

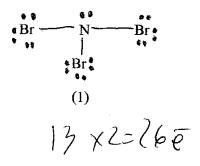
4. (a) The following molecule is [(soluble) or (insoluble)] (circle one) in water. (6 pts)

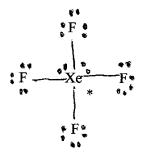
Al₂(CO₃)₃

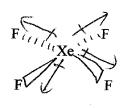
(b) Give two statements from the solubility chart to explain your answer. (2 pts)

5 For the following redox reaction, fill in the parenthesis by the reagent with either the letter (a) or (b). (a) is being oxidized (b) is being reduced (6 pts)

$$\begin{array}{c} \text{plus 1 electron per H} \\ \text{Na(s)} + \text{H Cl (aq)} \rightarrow \text{Na Cl} + \text{H}_2 \text{ (g)} \\ \text{Ox state} \quad \text{Na = zero} \quad \text{H = +1} \quad \text{Na = +1} \quad \text{H = zero} \end{array}$$

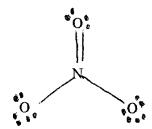


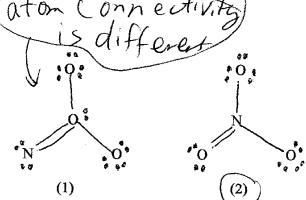

Lewis Dot Structure (9 pts total) 7.


(a) The number of valence electrons in N Br₃ is Show work for full credit. (6 pts)

(b) Which of the two Lewis Dot structures is the correct structure [(1) or (2)] (circle one) (3 pts)

8 Complete the following VSEPRT chart for the Lewis Dot structure shown.

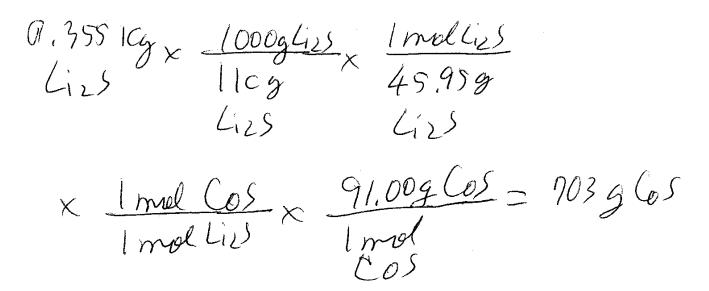

line- wedge- dash drawing above


Answer the following questions about the atom with the * (2 pts each, 18 pts)

- a. How many electron pairs
- b. How many lone pairs
- c. What is the geometry of the electron pairs? _____O World wal
- d. What is the geometry of the molecule? Square glass
- e. What is the hybridization $\int \frac{\partial}{\partial t} dt$ f. What is, are the bond angle $\int \frac{\partial}{\partial t} dt$
- g. For the bond, show the polarity symbol as an arrow or with the symbol δ

Xe-F (Fismost EN)

- h. Draw in the vector arrows for the molecule above in the line- wedge- dash drawing.
- i. The above molecule as a whole is [(polar) or (nonpolar)] (circle one)
- 9. For the molecule shown below, which of the two structures is a resonance structure? Circle either [(1) or (2)] (6 pts)



Part III. Long Answer Please show work for full credit and to receive partial credit. (73 pts) **** Please attempt every problem for partial credit. You will get no partial credit if you just rewrite the question with no change in anything.****

1. Convert the following using dimensional analysis. Show work. If you come up with the final correct numerical answer but show no work, you will lose all points. (25 pts total)
Li ₂ S(aq) + Co(NO ₃) ₂ (aq) \Rightarrow 2 LiNO ₃ (aq) + CoS (s) / / (25 pts total)
(E) C(2) MOLES
(a) If you have 0.355 kilograms of Li_2S (molar mass of $\text{Li}_2S = 45.95$ g/mol) and 8.92 pholes of
Co(NO ₃) ₂ , which is the limiting reagent?
{[Li ₂ S] or [Co(NO ₃) ₂] }(circle one) Explain & show work. (5 pts)
0.455 kg x 1000 g Lizs x 1 mollies = 7,73 mol
Lizs 1 kg 45,95g
(h) What is the theoretical yield (hased on the mass or males of the Life regardless of the mass or males

(b) What is the theoretical yield (based on the mass or moles of the Li₂S regardless of the mass or moles of the limiting reagent) of the CoS (s) in grams (molar mass of CoS = 91.00 g/mol)? (20 pts)

2. If you have a gas at pressure 3.09 atm at a volume of 0.500 Liters for a 2.0 mole sample of gas, what is the temperature in Kelvin? [PV = nRT, R=0.08206 (L atm)/(mol K)] (I made up these numbers so the numbers have no relation to reality.) (show work) (20 pts)

0 = 3.09 atm V = 0.500 (3.09atm)(0.500) = (2.0 med (0.0826)) N = 2.0 modT = 7

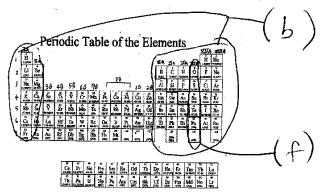
PV= nRT nRT= PV

T= PV

T = (3,09 atm) (0.500k) (2,0 mg/) (0.08206 katm)

T= 9.41 K

3. Using the periodic table, for the element (28 pts total, 2 pts each blank) Se
(a) give: atomic mass 96 amu atomic number 94 (4 pts)
(b) number of protons
79-94=45
(c) How many valence electrons does the element have? (4 pts) Explain how you know.
Some as group #
(d) What is the group number for the element (2 pts) [use the exact number (arabic #, roman #, letter or whatever) given in the periodic table attached to this exam]
(e) What is the charge on the element in its ionic form? — 2 (Explain & show work below if necessary) (4 pts) 6 -8 = -2
(f) How many total electrons does the ionic form of the element have? $\frac{360}{960}$ (Explain & show work below) (4 pts) $340 + 20 = 960$
(g) Give the Lewis Dot Symbol for the neutral element. (2 pts)
()
• Se •
6 0


	General Chemistry I Lect				r. Hahn Exam#_	····
Name_	Ley		_(print) Name			(sign)
Please Multip work, I	show work for partial cred le choice questions have no obviously cannot grade i exam and clearly tell me w Avogadro's number = 6	it and full credit on partial credit. P t. (1 pts print and s here the remaining	the Long Answer lease write anythi sign exam) If yo	OV Qv s and in some on ng you want gr ou run out of sp	aded legibly. If I ca ace , please continue	MON Questions. annot read your on the back page
If you	are a graduating senior, pl	ease write graduati	ng senior here	 	warner i	
	MULTIPLE CHOICE. Co		rnative that best o	ompletes the s	tatement or answers	the question. (2
	1) Identify the compound A) CO	with ionic bonds. B) H ₂ O	C) N ₂	D) Ne	E)KBr	1)
	2) Which one of the follow A) CHO	ving is not an empi	rical formula? C) CF	I 2O	D) C2H4O	2) <u>B</u>
	3) Which reaction below $f(g) + e^- \rightarrow O(g)$ B) $O^-(g) \rightarrow O(g) + e^-$ C) $O^-(g) + e^- \rightarrow O^2$ D) $O(g) \rightarrow O^+(g) + e^-$ E) $O(g) + e^- \rightarrow O^-(g)$	g) 	ionization of O?			3) _ <i>_D</i>
	4) Calculate the molar ma A) 204.13 g/mol B) 258.09 g/mol C) 56.00 g/mol D) 139.99 g/mol E) 86.03 g/mol	204	. 24 2×12) + 3(1) + 2(16)		4)
	5) The factor 10 ⁻³ corresp (A) milli	onds to which prefi B) deka	ix? C) cen	ıti	D) deci	5)
	6) Describe the shape of a A) three balls B) four balls C) dumbbell shaped D) eight balls E) spherical		·			6)

7) Isotopes differ in A) protons. B) electrons. C) neutrons. D) neutrons ar E) beta particle	nd protons.				7)
8) Choose the comp		elow.	,		8)
A) Au	B) Ne	C) He	(D) CH ₄	E) Li	<i>-</i>
9) What is the maxing (A) 5	mum number of d o B) 7	rbitals that are pos C) 9	sible? D) 1	E) 3	9) <u>A</u>
10) Identify the short (A) triple covale B) single coval C) double coval	ent bond ent bond	omo los eth		,	10)
D) all of the ab	ove bonds are the sa	ime iengin	_(ess €,	smaller	٨
11) Identify the specie		est radius (size).		2	11)
A) N ⁻⁵	B) N+1	C) N ⁰	(D))N+3	E) N-2	
	shape and no definit ume and definite sha		no definite shape and cannot be compresse		12)
13) How many valend A) 2	ce electrons do the a B) 7	lkali metals (Gp IA C) 6) possess?	E) 8	13)
14) Give the approxim			etrahedral shape.		14)
A) 180°	B) 120°	C) 90°	D) 109.5°	E) 105°	
15) Determine the oxi	dation state of C in (CO ₃ -2.	~ + 3(-L) =	—)	15)
A) -4	B) +6	(C))+4	C+3(-2)= $D)+2$	E) -2	10)
16) Identify the comp (A) Cl ₂ 2e _V 0 0	, B) HF	est dipole moment	in the gas phase.) = +4 D) CIF	16)
17) A double covalent		of electrons.		_	17)
A) 1 pair	B) 3 pairs	C) 4 pairs	D) 0 pairs	E) 2 pairs	-
B) An atom tha	t has lost a proton a t has gained a neutr t has gained an elect t has lost an electror	on. tron.			18)

19) If a solution has a 273.15	a temperature of 255	_	•	-	19) <u>D</u>
A) 491℃	B) 528°C	C) 355°C	D) -18°C	E) 123.9°C	
20) A cation of +2 inc A) gained two B) gained two C) lost two pro	protons.	nt has	295 _ 273	E) 123.9℃ 1.15 = - 8.15	(C)20) <u>E</u>
D) lost two ne E) lost two ele	utrons.				
21) How many signi	ficant figures are in th	ne measurement, 46	3.090 m?		21)
A) 3	B) 4	C) 2	D) 5	(E) 6	
22) How many H+ io	ons can the acid, H2Se	04 , donate per mol	ecule?		22)
A) 0	R) 1		2	(D) 2	

Part II Short Answer: Write the word or phrase or circle the choice that best completes each statement or answers the question. Some questions may require that you show work. If you do not show work, you may lose points. Even on questions which do not require work, if you legibly show work, you may get some partial credit. (81 pts)

- 1. (6 pts total) One mole of the element Ag has (1 pt) (give a number) of atoms and weighs (2 pts) grams one mole of the molecule $\mathbf{Rb_2CO_3}$ has 6022×10^{23} (1 pt) molecule and weighs 240, 95 (2 pts) grams (show work) 2(85.47) + (12.01) +3(16.0) = 250.95 Rb
- 2. (14 pts total) (1) Match the following words by inputting the letter associated with the word into the parenthesis given. Do not make up your own parenthesis. Each parenthesis should have a single letter matching the parenthesis. You may use each word given one time, many times or not at all. (8 pts, 4 pts each)
- (a) Transition metal element (b) main group element (c) lanthanide / actinides (d) alkali metals (e) alkaline earth metals (f) chalcogen (g) halogen (i) noble gases

(2) How do you decide which is the more electronegative element? (you would want to say something about across period and down group or something comparable) (3 pts)

Fis most electronegative — to left period less EN. I down group less en

(3) How do you decide which is the larger atom (larger radius atom)? (you would want to say something about across period and down group or something comparable) (3 pts)

+ across period smaller I down grow biggen

Dr. Hahn General Chemistry I Lecture Final Exam 10A

Fall 2013

page 4

3. Balance the following reaction by filling in the blank with a number. The number may be the number one or any other number. The parts without a blank do not need any numbers input to balance the equation. (8 pts, 4 pts each)

Fe₂O₃(s) + 3 CO(g)
$$\rightarrow$$
 2 Fe(s) + 3 CO₂(g)
 3 C 3 C 4 Q 3 C

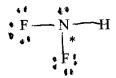
For the polyatomic ion shown, give the oxidation state of the atom S. Show work. (8 pts)

$$504^{2}$$
 $5+4(-2)=-2$
 $5=-2+8=+6$

- 5. Complete the following precipitation reaction by filling in each blank with an ion or molecule. (6 pts, 3 pts each)
- (a) molecular equation

$$\text{Li}_2 \text{CO}_3 \text{ (aq)} + \text{Ca(NO}_3)_2 \text{ (aq)} \rightarrow 2 \text{ Li NO}_3 \text{ (aq)} + \text{Ca CO}_3 \text{ (s)}$$

(b) ionic equation

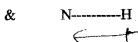

$$2\text{Li}^{+1}(aq) + \text{CO}_3^{-2}(aq) + \text{Ca}^{+2}(aq) + 2\text{NO}_3^{-1}(aq) \rightarrow 2\text{Li}^{+}(aq) + 2\text{NO}_3^{-1}(aq) + 2\text{NO}_3^{-1}$$

- 6 Place the following bonds in order using the choices below (each letter can only be used one time) (6 pts total, 2 pts each)
 - (a) longest bond length (b) medium bond length (c) shortest bond length

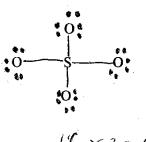
- Lewis Dot Structure (9 pts total) 7.
 - (a) The number of valence electrons in CHBr₃ is Show work for full credit. (6 pts)

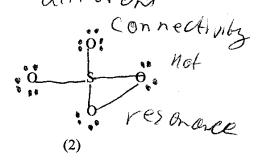
(b) Which of the two Lewis Dot structures is the correct structure [(1) or (2)] (circle one) (3 pts)

Complete the following VSEPRT chart for the Lewis Dot structure shown. 8


(assume C & H have the same electronegativities)

line- wedge- dash drawing above


Answer the following questions about the atom with the * (2 pts each, 18 pts)


- a. How many electron pairs ______
- b. How many lone pairs ___/
- c. What is the geometry of the electron pairs? <u>Le trake Dral</u>
- d. What is the geometry of the molecule? $\frac{\text{tigoral pyramical}}{\text{f. What is, are the bond angle}} \frac{\text{for the molecule}}{\sqrt{09.5}}$

- g. For the bond, show the polarity symbol as an arrow or with the symbol δ

- h. Draw in the vector arrows for the molecule above in the line- wedge- dash drawing.
- The above molecule as a whole is [(polar))or (nonpolar)] (circle one)
- For the molecule shown below, which of the two structures is a resonance structure? Circle either [(1) or (2)] (6 pts) different

16 x2= 52

16x2=32

General Chemistry I Lecture Dr. Hahn

Final Exam 10'A

2013 Fall

page 7

Part III. Long Answer Please show work for full credit and to receive partial credit. (73 pts)
**** Please attempt every problem for partial credit. You will get no partial credit if you just rewrite
the question with no change in anything.****

1. Convert the following using dimensional analysis. Show work. If you come up with the final correct numerical answer but show no work, you will lose all points. (25 pts total)

For the reaction shown below:

$$FeS(s) + 2HCl(aq) \rightarrow FeCl_2(s) + H_2S(g)$$

a. If you have excess FeS (s) and add 25.0 mL of a 0.125 M H Cl solution, how many Liters of H₂S would you generate? (1 mole at STP = 22.4 Liters)(20 pts)

25.0 nlx 0.125 maltle 1 moltes x 22.42 HCl 501n 501n HCl 425

= 0.0351

b. In the reaction above under the conditions shown is the limiting reagent { [FeS(s)] or [HCI] } (circle one) (5 pts)

Guesti & States excess [Es]

2. You have a mixture of gases with a pressure of 1.09 atm. in a container of volume 3.99 L at 298.2 K. If the new volume is 1.55 Liters at a temperature of 255.2 K, what is the new pressure in atm? $(P_1V_1)/(P_2V_2) = T_1/T_2$ (I made up these numbers so that the numbers have no relation to reality.) (show work) (20 pts)

$$P_2 = 1.09 \text{ atm}$$

 $V_2 = 3.99 \text{ l}$
 $T_2 = 298,2 \text{ K}$

$$P_1 = 7$$

 $V_1 = 1.55$
 $T_1 = 255.2$ K

3.	Electron Configuration Question:	(28 pts total)
----	----------------------------------	----------------

You should use the format of (1s², 2s², etc Ge (a). Give the electron configuration for the element This is not me giving the start of your electron configuration but just telling you the format for your answer.) DO NOT USE THE SHORTCUT ELECTRON CONFIGURATION USING THE NOBLE GAS. (10 pts)

152, 252, 2pb, 352, 3pb, 452, 3d1, 4p2

What is the valence electron configuration for the same uncharged element Ge ? Give the valence electron configuration in the form of (1s², 2s² etc. This is not me giving the start of your electron configuration but just telling you the format for your answer) (9 pts)

451, 4P2

Give an orbital diagram for the valence electron configuration for the element Ge using the format with up or down arrows for electrons. (9 pts)

You should show the lowest energy at the bottom of this space and the highest energy at the top of this space. (I typed the orbitals so that I can 2s1sdraw the thing on one line for ease of typing, you should show any difference in energy by drawing lines on a different level.)

1 14p - 11 4p

2013

Final	General Chemistry I	Lecture Fall 2	2013 12/4/13 V	V 10:30 B Dr. Ha	hn Exam #		
Name	. Key		(print) Name			(sig	n)
Multij work, of the	e show work for partial of ple choice questions have a longer of the choice questions have a longer of the choice questions and clearly tell market a longer of the choice	ve no partial credit. nde it. (1 pts print a ne where the remair	Please write anytend sign exam) If	hing you want graded you run out of space ,	l legibly.	not read on the ba	ck page
If you	ı are a <u>graduating</u> senio	r, please write grad	uating senior here				
	MULTIPLE CHOICE		alternative that bes	et completes the state	ment or answers t	he quest	ion. (2
pts p	er question, 44 pts pts t	otal)					0
	1) Identify the shorte	st bond.				1) _	<u>15</u>
	A) single covale						
	B) triple covaler C) double coval						
	-	ive bonds are the sa	me length			,	
	<i>2</i>) un 3, ais as		8				Λ
	2) Identify a cation.					2) _	#_
		t has lost an electro					
		t has gained an elec					
		t has gained a neut					
	D) An atom tha	t has lost a proton a	iid a ficulton.				-
	3) Isotopes differ in t	he number of				3)	ϵ
	A) neutrons and					/ -	
	B) beta particles	-					
	C) electrons.						
	D) protons.						
	E) neutrons.						
	A) (C) = (1		a madagula vyith a t	strahadral chara		4)	Λ
	4) Give the approxim A) 105°	B) 180°	C) 90°	D) 109.5°	E) 120°	- / -	
	A) 105	D) 100	C) 70	2, 20,10	-,		
	5) How many H+ ior	ns can the acid H29	O4 donate per mo	lecule?		5)	D
	A) 1	B) 0	C)		D) 2	-/ -	
	, -	_, -	-,		•		^
6) How many valence electrons do the alkali metals (Gp IA) possess?						6)	<u>D</u>
	A) 6	B) 7	C) 8	D) 1	E) 2		
							\sim
	7) Choose the compo				T) 7 .	7) _	<u> </u>
	A) Au	B) He	C) Ne	D) CH4	E) Li		

Final

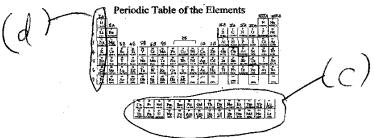
Fall I 2013

page

1

10:30 form B

Dr. Hahn General Chemistry I Lecture


8) If a solution has a temperature of 255 K, what is its temperature in degrees celsius? ($K = {}^{\circ}C + 273.15$					
A) 528°C	B) 123.9°C	C) 355°C	D) -18°C	E) 491°C	
9) Which reaction belongs: A) O ⁻ (g) + e ⁻ → B) O(g) + e ⁻ → C) O ⁻ (g) → O(g) D) O ⁺ (g) + e ⁻ → E) O(g) → O ⁺ (g)	O ² -(g) O ⁻ (g) g) + e ⁻ O(g)	rst ionization of ()?		9)
0) Identify the compo	ound with ionic bone	ls.			10) <u>A</u>
A) KBr	B) H ₂ O	C) CO	D) Ne	E) N ₂	- 1
1) The factor 10 ⁻³ cor A) deci	rresponds to which p B) milli		') centi	D) deka	11) <u>B</u>
2) Identify a solid. A) no definite sk C) can not -be cor	nape and definite vo mpressed		3) definite volume and 1) no definite shape ar	-	12) <u>B</u>
.3) Identify the specie	s that has the smalle	st radius (size).			13) <u>B</u>
A) N-2	B) N+3	C) N ⁰	D) N+1	E) N ⁻⁵	
4) Which one of the f A) CHO	following is not an en B) C2H4C		? () C2H4O	D) CH ₂ O	14) <u>B</u>
5) A cation of +2 indi A) lost two neut B) gained two p C) lost two prot D) lost two elect E) gained two e	trons. protons. ons. trons,	t has			15)
16) Identify the compound with the smallest dipole moment in the gas phase. A) Cl ₂ B) ClF C) HF D) LiF					
17) A double covalent					17) <u> </u>
A) 0 pairs	B) 1 pair	C) 2 pairs	D) 3 pairs	E) 4 pairs	
(8) Calculate the mola A) 86.03 g/mol B) 258.09 g/mol C) 139.99 g/mol D) 204.13 g/mol E) 56.00 g/mol	I I	D ₂)3.			18)

19) Describe the shape A) eight balls B) three balls C) spherical D) four balls	19)				
E) dumbbell sha	anad				
20) How many signific A) 3	20)				
21) Determine the oxid	21)				
22) What is the maxim	B) +6	C) -4 orbitals that are poss	D) +4	E) +2	22) D
A) 1	B) 7	C) 9	D) 5	E) 3	

Part II Short Answer: Write the word or phrase or circle the choice that best completes each statement or answers the question. Some questions may require that you show work. If you do not show work, you may lose points. Even on questions which do not require work, if you legibly show work, you may get some partial credit. (81 pts)

- 1. (6 pts total) One mole of the element N has 6.022×10^{-2} (1 pt) (give a number) of atoms and weighs 4.01 (2 pts) grams

 one mole of the molecule Li₂SO₄ has 6.022×10^{-23} (1 pt) molecule and weighs 1.09.95 (2 pts) grams (show work) 2.6.94 + 32.07 + 4.16.00 = 109.95
- 2. (14 pts total) (1) Match the following words by inputting the letter associated with the word into the parenthesis given. Do not make up your own parenthesis. Each parenthesis should have a single letter matching the parenthesis. You may use each word given one time, many times or not at all. (8 pts, 4 pts each)
 - (a) Transition metal element (b) main group element (c) lanthanide / actinides (d) alkali metals (e) alkaline earth metals (f) chalcogen (g) halogen (i) noble gases

(2) How do you decide which is the more electronegative element? (you would want to say something about across period and down group or something comparable) (3 pts)

Fis most electronegetive Eless En

(3) How do you decide which is the larger atom (larger radius atom)? (you would want to say something about across period and down group or something comparable) (3 pts)

-) smaller, bigger

3. Balance the following reaction by filling in the blank with a number. The number may be the number one or any other number. The parts without a blank do not need any numbers input to balance the equation. (8 pts, 4 pts each)

$$2NO(g) + 5H_2(g) \rightarrow 2NH_3(g) + 2H_2O(g)$$

 $2N, 29 \rightarrow 2N, 6H + 4H, 29$
 $10H$

For the polyatomic ion shown, give the oxidation state of the atom S. Show work. (8 pts)

$$504^{2}$$
 $5 + 4(-2) = -2$
 $5 = -2 + 8 = +6$

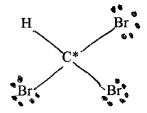
- 5. Complete the following precipitation reaction by filling in each blank with an ion or molecule. (6 pts, 3 pts each)
 - (a) molecular equation

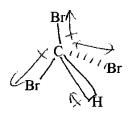
$$\text{Li}_2 \text{CO}_3 \text{ (aq)} + \text{Ca(NO}_3)_2 \text{ (aq)} \rightarrow 2 \text{Li NO}_3 \text{ (aq)} + \text{Ca CO}_3 \text{ (s)}$$

(b) ionic equation

$$2\text{Li}^{+1}(aq) + \text{CO}_3^{-2}(aq) + \text{Ca}^{+2}(aq) + 2\text{NO}_3^{-1}(aq) \rightarrow 2\text{Li}^{+1}(aq) + 2\text{NO}_3^{-1}(aq) + 2\text{NO}_3^{-1$$

- 6 Place the following bonds in order using the choices below (each letter can only be used one time) (6 pts total, 2 pts each)
 - (a) Highest bond strength (b) medium bond strength (c) lowest bond strength


Lewis Dot Structure (9 pts total) 7.

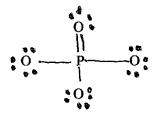

- (a) The number of valence electrons in P Cl 5 is 40 Show work for full credit. (6 pts) 5 + 5(1) = 40
- (b) Which of the two Lewis Dot structures is the correct structure [(1) or (2)] (circle one) (3 pts)

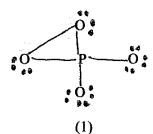
20KL=40E

22 x2 = 46 e 600 mong e (P+ Cl Con expand) ortet

Complete the following VSEPRT chart for the Lewis Dot structure shown. 8

(assume C & H have the same electronegativities)


line- wedge- dash drawing above


Answer the following questions about the atom with the * (2 pts each, 18 pts)


- a. How many electron pairs _______ b. How many lone pairs ______
- c. What is the geometry of the electron pairs? <u>Let Val Qual</u>
- e. What is the hybridization 995 f. What is, are the bond angle 095
- g. For the bond, show the polarity symbol as an arrow or with the symbol δ

&

- h. Draw in the vector arrows for the molecule above in the line- wedge- dash drawing.
- The above molecule as a whole is [(polar) or (nonpolar)] (circle one)
- For the molecule shown below, which of the two structures is a resonance structure? Circle either [(1) or (2)] (6 pts)

Dr. Hahn General Chemistry I Lecture Final Exam 10. B

Fall 2013

page 7

Part III. Long Answer Please show work for full credit and to receive partial credit. (73 pts) **** Please attempt every problem for partial credit. You will get no partial credit if you just rewrite the question with no change in anything.****

Convert the following using dimensional analysis. Show work. If you come up with the final 1. correct numerical answer but show no work, you will lose all points. (25 pts total)

 $NH_4Cl(aq) + NaOH(aq) \rightarrow H_2O(1) + NH_3(g) + NaCl(aq)$

a. If you have excess NH₄Cl(aq) and add 15.0 mL of a 0.500 M Na OH solution, how many Liters of $NH_3(g)$ would vou generate? (1 mole at STP = 22.4 Liters) (20 pts)

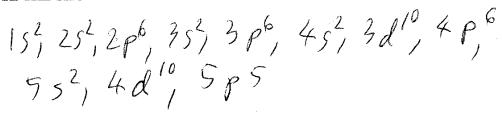
15.00 x 0.500 methaby x 1 mol NA3 x 22.48 1 mol Nath 1 mol Nath 1 mol Nath 1 mol Nath = 0.168 l NH2

b. In the reaction above under the conditions shown is the limiting reagent { [NH4Cl(aq)] or [NaOH] } (circle one) (5 pts) States excess N44U 50-

You have a mixture of gases in a volume of 1.07 liters at temperature of 275.2 K at an unknown pressure. If the new volume is 3.22 liters at pressure 1.11 atm and temperature of 157.2 K, what is the old unknown pressure? $(P_1V_1)/(P_2V_2) = T_1/T_2$ (I made up these numbers so that the numbers have no relation to reality.) (show work) (20 pts)

$$P_1 = 1.11atm$$
 $P_1 = ?$
 $T_1 = 157.2k$
 $T_1 = 275.2k$
 $V_1 = 3.22l$
 $V_1 = 1.07l$

$$\frac{P_{1}V_{1}}{P_{2}V_{2}} = \frac{T_{1}}{T_{2}}$$


$$P_{1} = \left(\frac{T_{1}}{T_{2}}\right)\left(\frac{P_{2}V_{2}}{V_{1}}\right)$$

$$P_{1} = \left(\frac{275.21c}{1.07lc}\right)\left(\frac{3.22lc}{1.07lc}\right)$$

$$P_{1} = 5.85 \text{ otm}$$

3. Electron Configuration Question: (28 pts total)

(a). Give the electron configuration for the element I. You should use the format of $(1s^2, 2s^2,$ etc. This is not me giving the start of your electron configuration but just telling you the format for your answer.) DO NOT USE THE SHORTCUT ELECTRON CONFIGURATION USING THE NOBLE GAS. (10 pts)

What is the valence electron configuration for the same uncharged element I ? Give the valence electron configuration in the form of (1s², 2s² etc. This is not me giving the start of your electron configuration but just telling you the format for your answer) (9 pts)

I using the format Give an orbital diagram for the valence electron configuration for the element with up or down arrows for electrons. (9 pts)

16 You should show the lowest energy at the bottom of this space and the highest energy at the top of this space. (I typed the orbitals so that I can 1s draw the thing on one line for ease of typing, you should show any difference in energy by drawing lines on a different level.)