| Quiz IV General Chemistry I Lecture Spring 14 Dr. Hahn 20 pts 2/25 T 8:30 am Form A quiz #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NameName                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (print name) (sign name) (I can't read some of your handwriting.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Please show all work for full credit. If you show work you may also get partial credit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| For the molecule NaCl (molar mass = 58.45 g/mol), how many moles is 834.2 grams of the compound? (show work) (4 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| compound? (show work) (4 pts)  834,29 × mol Nall  Nall |
| If the empirical formula for a molecule is AlCl <sub>3</sub> and the molecular formula mass is $\frac{265}{9}$ g/mole, what is the molecular formula? (4 pts) $\frac{2}{2}, \frac{9}{8} + \frac{3}{3}(\frac{35}{35}, \frac{45}{5}) = \frac{133}{35}, \frac{33}{35}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 265 = 1,99 -> (DeCl3)*2 -> Dl2Cl6 moberular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| For the reaction shown, what is the theoretical yield of the CO <sub>2</sub> if you start with 1.5 moles of Fe <sub>2</sub> O <sub>3</sub> (s). The formula mass of CO <sub>2</sub> is 44.01 g/mole . (6 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $Fe_2O_3(s) + 3 CO(g) \rightarrow 2Fe(s) + 3 CO_2(g)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\frac{1.5 \text{ hold}}{\text{Fe}_2 O_2} \times \frac{\frac{1}{1} \text{ hold}}{\text{Hold}} \times \frac{\frac{1}{200} \text{ GeV}}{\text{Hold}} = \frac{1}{200} \text{ GeV}$ 4 What is the molarity of a solution made by mixing 33.3 grams of H <sub>2</sub> SO <sub>4</sub> (FW = 54.09 g/mole) in enough water to make up 78.2 mL of solution. (6.pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 75.39 152504 × 1 mol 12504 × 1000ml = 7,87ml or ) method A 1000ml = 7,87ml or ) method A 18.2 ml × 18.2 ml × 1000 ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Extra Credit (3 pts): (a) Is the compound BaCO <sub>3</sub> [(sóluble) of (insoluble)] (circle one) in water. (1 pt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (b) Write out the molecular form of the following precipitation reaction giving the expected products by filling in the blanks with the expected product & then circling the molecule's state of solid or aqueous. The reaction does not need to be balanced. (2 pts, ½ pt each)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $BaCl_2(aq) + NaCO_3(aq) \rightarrow \underline{baCO_2}[(s)] or (aq)] (circle one) + \underline{baC}[(s)] or (aq)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



|                                   |                                                                             |                                 |                                           | ς.                                    | gveen                     |
|-----------------------------------|-----------------------------------------------------------------------------|---------------------------------|-------------------------------------------|---------------------------------------|---------------------------|
| Quiz IV General                   | Chemistry I Lecture                                                         |                                 |                                           |                                       |                           |
| Name                              | Rey                                                                         | Na                              | me<br>n name) (I can't re                 |                                       |                           |
| (print name)                      | U                                                                           | (sig                            | n name) (I can't re                       | ad some of your l                     | nandwriting.)             |
| Please show all w                 | ork for full credit. If                                                     | you show work                   | you may also get p                        | partial credit.                       |                           |
| 1 For the me compound? (show      | olecule Na <sub>2</sub> SO <sub>4</sub> , (with<br>wwork) (4 pts)           | h molar mass =                  | 142.07 g/mol), hov                        | w many moles is 7                     | 78.4 grams of the         |
| 18.49                             | 14201g                                                                      | 12504 =                         | 0,552 ma                                  | l                                     |                           |
| Na2504                            | <u> </u>                                                                    |                                 | Naz 504                                   |                                       |                           |
|                                   | Na2509                                                                      | i<br>i                          |                                           |                                       |                           |
| 2 For the me                      | plecule SO <sub>2</sub> what is                                             |                                 |                                           |                                       | ght or MW SO <sub>2</sub> |
| 64.07 g/mole) (4                  | > atamic                                                                    | - /                             | 32,07g/r                                  |                                       |                           |
| Tomass                            | $= \frac{32.07}{64.0}$                                                      | 1*1)g.                          | 57/00-                                    | 50.05                                 | no 5                      |
| 5                                 | 64,0                                                                        | 179 52                          | 1/100 =                                   | in 5                                  | 02                        |
| 3 Balance the is in both sides of | the following reaction the equation after you                               | by filling in the complete bala | blanks. Please shon incing the reaction f | w how many of e or full credit.(6 p   | ach type of atom<br>ts)   |
| 2Na(s) +                          | $Br_2(g) \Leftrightarrow 2$ NaB                                             | r (s)                           |                                           |                                       |                           |
| LNa, B                            | $\operatorname{Br}_{2}(g) \Rightarrow \underline{2} \operatorname{NaB}_{2}$ | 1, 2Br                          |                                           |                                       |                           |
| 4 If the mola NaCl do you have    | urity of a solution is 1.<br>e? (FW of NaCl is 58                           | 2 M and you h<br>3.45 g/mole)(6 | nave 250.0 mL of pts)                     | the solution, how                     | many grams of             |
| 250,0ml                           | x 1.2 mol/                                                                  | Vallx.                          | 58.455<br>Inel Nall                       | Nall =                                | 17.5 gram                 |
| 7250.0nfx                         | 50 ln × 1                                                                   | Nall X                          | 58,4591                                   | Vay 17,5                              | 25:9 fig -18              |
| Extra Credit (3 pts               | : (a) Is the compo                                                          | und SrSO4 ((so                  | tuble) or (msoluble                       | (()<br><del>()) (circle one) in</del> | water. (1-pt)             |
|                                   | nolecular form of the                                                       |                                 |                                           |                                       |                           |

(b) Write out the molecular form of the following precipitation reaction giving the expected products by filling in the blanks with the expected product & then circling the molecule's state of solid or aqueous. The reaction does not need to be balanced. (2 pts, ½ pt each)

$$SrI_2$$
 (aq) +  $Na_2SO_4$  (aq)  $\Rightarrow$   $\underbrace{Sr}$   $\underbrace{Sr}$  (s)  $\underbrace{gr}$  (aq)](circle one) +  $\underbrace{Na_2SO_4}$  (aq)  $\underbrace{sr}$  [(s) or  $\underbrace{sr}$ 

| Quiz IV General Chemistry I Lecture Spring 14 Dr. Hahn 20 pts 2/25 T 9:55 am Form B quiz #                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name Name (print name) (I can't read some of your handwriting.)                                                                                                                                                                                                                  |
| Please show all work for full credit. If you show work you may also get partial credit.                                                                                                                                                                                          |
| 1 For the molecule $Na_2SO_4$ , (with molar mass = 142.07 g/mol), how many moles is 12.4 grams of the compound? (show work) (4 pts)                                                                                                                                              |
| 12,4g x mol Naz 504 = 0,0873 mol                                                                                                                                                                                                                                                 |
| 12.49 x mol Naz 504 = 0.0873 mol<br>Naz 504 × 142.01 Naz 904<br>9Naz 504                                                                                                                                                                                                         |
| For the molecule CH <sub>4</sub> what is the percent by mass of the hydrogen? (molecular weight or MW CH <sub>4</sub> is 16.05 g/mole) (4 pts)  (10) * 4 = 4.049 Hin CH4 Mole                                                                                                    |
| $90H = \frac{(4.04gH)}{16.05gCH4} * 100 = 25.270 Hin$                                                                                                                                                                                                                            |
| is in both sides of the equation after you complete balancing the reaction for full credit. (6 pts)                                                                                                                                                                              |
| $2 \text{ Al(s)} + 2 \text{ Cl}_2(g) \Rightarrow 2 \text{ AlCl}_3(s)$                                                                                                                                                                                                            |
| $\frac{2}{2}Al(s) + \frac{3}{2}Cl_{2}(g) \Rightarrow 2AlCl_{3}(s)$ $2Al(, GU) 2Al(, GU)$                                                                                                                                                                                         |
| 4 If the molarity of a solution is 0.50 M and you have 125 mL of the solution, how many grams of HBr do you have? (FW of HBr is 80.92 g/mole) (6 pts)                                                                                                                            |
| (125ml 50ln x 0,50ml HB- x 80,929 = 5,19HB-)                                                                                                                                                                                                                                     |
| Extra Credit (3 pts): (a) Is the compound Mg(OH) <sub>2</sub> [(soluble) or (insoluble)] (circle one) in water. (1 pt)                                                                                                                                                           |
| (b) Write out the molecular form of the following precipitation reaction giving the expected products by filling in the blanks with the expected product & then circling the molecule's state of solid or aqueous. The reaction does not need to be balanced. (2 pts, ½ pt each) |
| $Ba(OH)_2(aq) + Mg(NO_3)_2(aq) \rightarrow \frac{1}{2} [s] or(aq)] (circle one) + Ba(0D)_2[s] (s) or(aq)] (circle one)$                                                                                                                                                          |

(circle one)



| Name                                                                              | Name                                                                                                                               |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| (print name)                                                                      | (sign name) (I can't read some of your handwriting.)                                                                               |
| Please show all work for full credit                                              | . If you show work you may also get partial credit.                                                                                |
| For the molecule Na <sub>2</sub> SO <sub>4</sub> , (compound? (show work) (4 pts) | (with molar mass = $142.07$ g/mol), how many moles is $78.4$ grams of the                                                          |
|                                                                                   |                                                                                                                                    |
| For the molecule SO <sub>2</sub> what<br>4.07 g/mole) (4 pts)                     | at is the percent by mass of the sulfur ? (molecular weight or MW SO <sub>2</sub>                                                  |
|                                                                                   |                                                                                                                                    |
|                                                                                   |                                                                                                                                    |
|                                                                                   |                                                                                                                                    |
| Balance the following reaction in both sides of the equation after                | on by filling in the blanks. Please show how many of each type of atom you complete balancing the reaction for full credit.(6 pts) |
| Na(s) + $\_$ Br <sub>2</sub> (g) $\rightarrow$ N                                  | faBr (s)                                                                                                                           |
|                                                                                   |                                                                                                                                    |
| If the molarity of a solution is aCl do you have? (FW of NaCl is                  | s 1.2 M and you have 250.0 mL of the solution, how many grams of 58.45 g/mole) (6 pts)                                             |
|                                                                                   |                                                                                                                                    |
|                                                                                   |                                                                                                                                    |
|                                                                                   | • • • • • • • • • • • • • • • • • • •                                                                                              |
| tra Credit (3 pts): (a) Is the com                                                | apound SrSO <sub>4</sub> [(soluble) or (insoluble)] (circle one) in water. (1 pt)                                                  |
| Write out the molecular form of the                                               | e following precipitation reaction similar d                                                                                       |
| e reaction does not need to be balar                                              | ed brodlict & then circling the meleculate state of the                                                                            |
|                                                                                   |                                                                                                                                    |

| Name                                                                            | Name                                                                                                                                                                                        |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (print name)                                                                    | (sign name) (I can't read some of your handwriting.)                                                                                                                                        |
| Please show all work for f                                                      | full credit. If you show work you may also get partial credit.                                                                                                                              |
| 1 For the molecule N compound? (show work) (                                    | $Ma_2SO_4$ , (with molar mass = 142.07 g/mol), how many moles is 12.4 grams of the 4 pts)                                                                                                   |
| 2 For the molecule C<br>CH <sub>4</sub> is 16.05 g/mole) (4 pt                  |                                                                                                                                                                                             |
| Balance the following in both sides of the equat  Al(s) + Cl <sub>2</sub> (g) → | ng reaction by filling in the blanks. Please show how many of each type of atom ion after you complete balancing the reaction for full credit.(6 pts)  2 AlCl <sub>3</sub> (s)              |
| If the molarity of a s<br>Br do you have ? (FW of                               | olution is 0.50 M and you have 125 mL of the solution, how many grams of HBr is 80.92 g/mole) (6 pts)                                                                                       |
|                                                                                 |                                                                                                                                                                                             |
| ktra Credit (3 pts): (a) Is the                                                 | he compound Mg(OH) <sub>2</sub> [(soluble) or (insoluble)] (circle one) in water. (1 pt)                                                                                                    |
| ) Write out the molecular f<br>ling in the blanks with th                       | form of the following precipitation reaction giving the expected products by expected product & then circling the molecule's state of solid or aqueous.  To be balanced. (2 pts, ½ pt each) |
| .(OH) <sub>2</sub> (aq) + Mg(NO <sub>3</sub> ) <sub>2</sub> (aq                 | ) $\rightarrow$ [(s)or(aq)](circle one) +[(s)or(aq)](circle one)                                                                                                                            |