

Quiz VI General Chemistry I Lecture Spring 14 Dr. Hahn 20 pts 3/25 T 8:30 am Form B	らくそらと quiz#
Name Name	- .
(print name) (sign name) (I can't read some of your hand	writing.)
Please show all work for full credit. If you show work you may also get partial credit. (1 atm = 760 torr=760 mm Hg) (Kelvin = $^{\circ}$ C + 273.15) [PV=nRT, R=0.08206 (L atm)/(mol K) [(P ₁ V ₁)/(P ₂ V ₂) = (T ₁ /T ₂)]]
1. Reduction (being reduced) means that the reactant [(loses) or (gains)] (circle one) electrons	ons so that
the reactant oxidation state becomes more (negative) or (positive)](circle one) and is ac	ting as the
[oxidizing agent) or (reducing agent)](circle one) (1 pt each, 3 pts)	
2. Give the oxidation state for the following. Show work. (3 pts each, 6 pts)	
a. $N \text{ in } N_2$ 200 b. $N \text{ in } NO_3$ 45	
a. N in No ₃	- golyatomic)
form element N= -1+6=+5	100
150,2 Lorr x ath. = 0,9871 atm	0 1
150, 2 Lorv x ath. $\frac{1}{160}$ Lorv $\frac{1}{160}$ Cov Vett $\frac{1}{160}$ Cov Vett $\frac{1}{160}$ Median Marketing A balloon is measured to occupy 1.2 Liters at 1.01 atmospheres at 298.14 Kelvin. The temoved into a room at 313.5 Kelvin and 1.31 atmospheres, what is the new volume of the balloof $\frac{1}{160}$ Median $\frac{1}{160$	fig) palloon is
[(1 V 1/1 C V 1 1/1 A / PSTC	
$V_1 = 1, 2 l$ $V_2 = 7$, $(1.31 atm) V_2$ $P_1 = 1.01 atm P_2 = 1.31 atm (1.01 atm) (1.2 l)$	298,14/c
Ti= 298,14K T2=313,5 K V2=(313,9K)(1,0	(1,2l)
$T_{1} = 298.14k T_{2} = 313.5 k V_{2} = \left(\frac{313.9k}{298.14k}\right) \frac{(1.0)}{(1.5)^{1/2}} = \frac{72}{7} V_{2} = 0.97 $	1 atm)
Extra Credit: If you do the following reaction, if you start the reaction with 2.5 moles of NaN the theoretical yield of the $N_2(g)$ in liters? (1 mole gas = 22.4 Liters) (3 pts)	I ₃ what is
$2 \text{ NaN}_3(s) \rightarrow 2 \text{ Na } (s) + 3 \text{ N}_2(g)$ 2 is mol 2 is mol 2 is mol 2 NaN_3 2 mol 2 mol 2 mol 2 mol 2 mol 2 mol	= 841 Nz

Quiz VI General Chemistry I Lecture Spring 14 Dr. Hahn 20 pts 3/25 T 9:55 am Form A quiz #
Name Name Name
(print name) (I can't read some of your handwriting.)
Please show all work for full credit. If you show work you may also get partial credit. (1 atm = 760 torr=760 mm Hg) (Kelvin = $^{\circ}$ C + 273.15) [PV=nRT, R = 0.08206 (L atm)/(mol K)] [(P ₁ V ₁)/(P ₂ V ₂) = (T ₁ /T ₂)]
1. In the reaction shown which atom is undergoing oxidation or reduction given the oxidation states shown? (1.5 pts each, 3 pts)
minus 1 electron per Hydrogen (oxidation) or (reduction)](circle one)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
plus 1 electron per titanium [(oxidation) or (reduction) circle one)
2. Give the oxidation state for the following. Show work. (3 pts each, 6 pts)
a. $\sin SO_3^2 + 4$ b. $\cot CaCl_2 + 2$ $S + 5(-2) = -2$ $\cot CaCl_2 + 2$ S = -2 + 6 = +4 3. Convert 23.3 °C to Kelvin. (4 pts) C = (29.3) + 6 = 24.3°C + 293.15 = 296.45 K
A sample of gas at 303.2 Kelvin and 2.52 Liters has a pressure of 1.1 atmospheres. How many moles of the gas do you have? (PV=nRT) (7 pts) $PV=nRT$ $V=1000$
Extra Credit: If you do the following reaction, if you start the reaction with 3.2 moles of HCl what is the theoretical yield of the $H_2O(g)$ in liters? (1 mole gas = 22.4 Liters) (3 pts)
$Zn(s) + 2 HCl(aq) \rightarrow ZnCl_2(aq) + H_2O(g)$ 3.2 hol
3.2 mol × 1 mol th 0 × 22,4 l th 0(g) = 35,84 l

Quiz VI Gene	ral Chemistry	I Lecture Spri	ing 14 Dr. Hahn	20 pts 3/25 T 9:	55 am Fori	rage mB quiz#
Name	Kers		Name			
(print name)	1 0		(sign nan	ne) (I can't read so	ome of your l	handwriting)
$[(P_1V_1)/(P_2V_2)]$ 1. In the	$= (T_1/T_2)$	vn which atom i	show work you r C + 273.15) [PV	nay also get partia =nRT, R=0.08206 dation or reduction	al credit. 5 (L atm)/(mo	ol K)]
	Minus 2 elec	tron / Oxygen [oxidation or (re	eduction)](circle o	one)	
2 HgO(s)	→	2 Hg (l) +	$O_2(g)$			
+2 -2		zero	zero			
Plus 2 elec	ctrons/mercu	ry [(oxidation)	or (reduction)	circle one)		
2. Give the	e oxidation sta	ate for the follow	wing. Show wor	k. (3 pts each, 6 p	ots)	
a. Clin C Cl - 7. 3. Convert K =	$aCl_2 \qquad \qquad$	b. to °C. (4 pts) 73,15 —	Clin Cl ₂ Le	273,15 = 5	orm oc	of element
N = 2.33 $T = 2.93$ $P = 0.0$ $V = 7$ Extra Credit: If	mel 8,14K 981ah Jou do the fo	$ \begin{array}{c} (0, 9) \\ (2, 9) \\ (3, 9) \\ (4, 9) \\ (5, 9) \\ (6, 9) \\ (7, 9) \\ (7, 9) \\ (7, 9) \\ (8, 9) \\ (9, $	ample of gas occ (2,44 hold) (2,44 hold) (7,8 0 do	0,082061 ,981akm	elvin, and pre	SSURE OF 0.987 $(298, 14K)$ $(98, 14K)$ $(38, 14K)$ $(48, 14K)$
2 NH ₄ NO ₃ (g) → 1,8 Mol	$ 2N_2(g) + 2$	_	(g) L		87	•
7,8mol NH4NO3	1 me 2 me	$\frac{lO_2}{2l}$ \times	22,4 l 1 mal 02	$O_2(g)$	= 87,3	sigfig 6 l

Quiz VI General Chemistry I Lecture Spring 14 Dr. Hahn 20 pts 3/25 T 8:30 am Form A quiz #
NameName(print name) (I can't read some of your handwriting.)
(Sign name) (I can't read some of your handwriting.)
Please show all work for full credit. If you show work you may also get partial credit. (1 atm = 760 torr=760 mm Hg) (Kelvin = $^{\circ}$ C + 273.15) [PV=nRT, R=0.08206 (L atm)/(mol K)] [(P ₁ V ₁)/(P ₂ V ₂) = (T ₁ /T ₂)]
1. Oxidation (being oxidized) means that the reactant [(loses) or (gains)] (circle one) electrons so that
the reactant oxidation state becomes more [(negative) or (positive)](circle one) and is acting as the
[(oxidizing agent) or (reducing agent)](circle one) (1 pt each, 3 pts)
2. Give the oxidation state for the following. Show work. (3 pts each, 6 pts)
a. Na in Na Cl b. Na in Na
3. Convert 1.1 atmosphere to torr. (4 pts)
A gas exerts a pressure of 1.1 atmospheres at 278.2 Kelvin in a tank with a piston of volume 3.23 Liters. If the same gas tank is pressurized to 2.3 atmospheres by moving the piston at the same temperature, what is the new volume ? $[(P_1V_1)/(P_2V_2) = (T_1/T_2)]$ (7 pts)

Extra Credit: If you do the following reaction, if you start the reaction with 1.2 moles of H_2 what is the theoretical yield of the HCl (g) in liters? (1 mole gas = 22.4 Liters) (3 pts)

 $2 \, \text{TiCl}_4\left(g\right) + \, \text{H}_2\left(g\right) \Rightarrow \, 2 \, \text{TiCl}_3\left(s\right) \, + \, 2 \, \text{HCl}\left(g\right)$

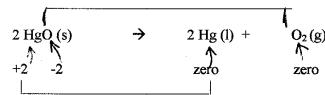
Quiz	VI General Chemistry I Lecture Spring 1	4 Dr. Hahn 20 pts 3/25 T 8:30 am Form	byreez B quiz#5
Name		Name	
	name)	(sign name) (I can't read some of your h	andwriting)
(1 atı	e show all work for full credit. If you show $m = 760 \text{ torr} = 760 \text{ mm Hg}$ (Kelvin = ${}^{\circ}\text{C} + {}^{1}\text{C}/(P_{2}V_{2}) = (T_{1}/T_{2})$]		
1.	Reduction (being reduced) means that the	e reactant [(loses) or (gains)] (circle one) ele	ectrons so that
	the reactant oxidation state becomes more	re [(negative) or (positive)](circle one) and is	s acting as the.
	[(oxidizing agent) or (reducing agent)](c	ircle one) (1 pt each, 3 pts)	
	Give the oxidation state for the following $N \text{ in } N_2$ b. $N \text{ in } N_2$	- ·	
3.	Convert 750.2 torr to atmosphere. (4 pt	s)	
4 moved [(P ₁ V ₁)	A balloon is measured to occupy 1.2 Lite into a room at 313.5 Kelvin and 1.31 atm $V(P_2V_2) = (T_1/T_2)$ (7 pts)	rs at 1.01 atmospheres at 298.14 Kelvin. The ospheres, what is the new volume of the bal	ne balloon is loon.
			•

Extra Credit: If you do the following reaction, if you start the reaction with 2.5 moles of NaN₃ what is the theoretical yield of the $N_2(g)$ in liters? (1 mole gas = 22.4 Liters) (3 pts)

 $2 \text{ NaN}_3(s) \rightarrow 2 \text{ Na } (s) + 3 \text{ N}_2(g)$

Name	pring 14 Dr. Hahn 20 pts 3/25 T 9:55 am Form A quiz #
(print name)	Name(sign_name) (I can't read some of your handwriting.)
(Francisco)	(sign name) (I can t read some of your handwriting.)
Please show all work for full credit. If you (1 atm = 760 torr=760 mm Hg) (Kelvin = $(P_1V_1)/(P_2V_2) = (T_1/T_2)$]	ou show work you may also get partial credit. = °C + 273.15) [PV=nRT, R = 0.08206 (L atm)/(mol K)]
In the reaction shown which ator shown ? (1.5 pts each, 3 pts)	m is undergoing oxidation or reduction given the oxidation states
minus 1 electron per Hyo	drogen [(oxidation) or (reduction)](circle one)
TiCl ₄ (g) + H ₂ (g) \rightarrow 2 TiCl ₃ (s) + 2 H 4 zero +3 +	HCl (g)
plus 1 electron per titanium [(oxidation	or (reduction)](circle one)
. Give the oxidation state for the fol	llowing. Show work. (3 pts each, 6 pts)
a. S in SO ₃ -2 b.	Ca in CaCl ₂
Convert 23.3 °C to Kelvin. (4 pts))
A sample of gas at 303.2 Kelvin an oles of the gas do you have? (PV=nRT)	and 2.52 Liters has a pressure of 1.1 atmospheres. How many (7 pts)
	•
•	

Extra Credit: If you do the following reaction, if you start the reaction with 3.2 moles of HCl what is the theoretical yield of the $H_2O(g)$ in liters? (1 mole gas = 22.4 Liters) (3 pts)


 $Zn(s) + 2 HCl (aq) \rightarrow ZnCl_2(aq) + H_2O (g)$

Name Name (sign name) (I can't read some of your handwriting.)

Please show all work for full credit. If you show work you may also get partial credit. (1 atm = 760 torr=760 mm Hg) (Kelvin = $^{\circ}$ C + 273.15) [PV=nRT, R=0.08206 (L atm)/(mol K)] [(P₁V₁)/(P₂V₂) = (T₁/T₂)]

1. In the reaction shown which atom is undergoing oxidation or reduction given the oxidation states shown? (1.5 pts each, 3 pts)

Minus 2 electron / Oxygen [(oxidation) or (reduction)](circle one)

Plus 2 electrons /mercury [(oxidation) or (reduction)] (circle one)

- 2. Give the oxidation state for the following. Show work. (3 pts each, 6 pts)
 - a. Cl in $CaCl_2$ b. Cl in Cl_2
- 3. Convert 310.1 Kelvin to °C. (4 pts)
- How many Liters does a 2.33 mole sample of gas occupy at 298.14 Kelvin, and pressure of 0.987 atmosphere? (PV=nRT) (7 pts)

Extra Credit: If you do the following reaction, if you start the reaction with 7.8 moles of NH_4NO_3 what is the theoretical yield of the $O_2(g)$ in liters? (1 mole gas = 22.4 Liters) (3 pts)

$$2 \text{ NH}_4 \text{NO}_3(g) \rightarrow 2 \text{N}_2(g) + 4 \text{H}_2 \text{O}(g) + \text{O}_2(g)$$