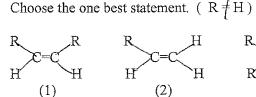
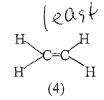

Exam	n I Organic Chem II (CHEM 442) Spring 16 2/17 Dr. Hahn MWF 1pm Form A Exam#
	Name Print Name
() pts	s name above print & sign, 1 pt scantron name) (100 pts, 11 pages + scantron sheet)
legible you v	the show work on all questions for partial credit even on questions which do not specify. Please write ly. If I cannot read your answer, I cannot grade your answer. (use back of exam for scratch paper – If want me to grade something not in the space for the answer, clearly specify in writing. Telling me during the exam where to find the answer does not qualify because I will just vaguely remember someone telling me of thing during the exam not which one of 200 students told me what to grade on what page.)
	e answer on this form for backup to the scantron. There is no partial credit for showing work in the
	NA = 100 attempted IVW = 110 WOVIS
	questions on all parts of this exam, R is not equal to hydrogen but is an alkyl.
WH	E = not far enough (TF = too far) (NSE = not)
I.	Multiple Choice (2 pts each, 24 pts) Choose the <u>one</u> best statement in each question.
1.	Which of the following reactions does <u>not</u> show a <u>syn</u> product?
a)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(b)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
c)	CH3—C=C—CH3 Pt°/CaCO3 H CH3 CH3—CH3—CH3—CH3 CH3—C=C—CH3—CH3—CH3—CH3—CH3—CH3—CH3—CH3—CH3—CH
(d)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

- 2. About spectra which of the following statements is incorrect?
- a) In proton NMR spectra the information that one derives is chemical shift, peak area and coupling which gives you information about the hydrocarbon structure.
- b) In IR spectra 4000 cm⁻¹ to 1500 cm⁻¹ is the functional group region in which peaks which are representative of functional groups appear so you can use IR to find out what functional groups are in the organic molecule.
- c) In IR spectra 1500 cm⁻¹ to 400 cm⁻¹ is the fingerprint region which can be used to match the finger prints of authentic samples of a compound with an unknown sample of an organic compound.
- UV Vis spectra is observed for conjugated organic molecules. More conjugated systems have larger energy gaps which results in larger λ_{max_2}
- 3. For the element Sb, circle the one incorrect statement.
 - a). The atomic mass is 121.76
 - b The total number of electrons for a neutral atom is 5
 - c) The atomic number is 51
 - d) The number of valence electrons is 5
- 4. The product of an S_N1 reaction of the following substrate is:



In the following molecule, which is endo/exo. Choose the best statement. 5

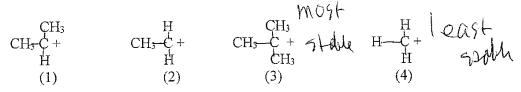

- a) (x) is exo
- b) (x) is endo
- c) (y) is endo
- d) There is no exo / endo in this molecule.
- (e) (a) and (c) are correct.

6 According to Zaitsev's (or sometimes spelled Saytzeff's) Rule, the most stable to least stable alkene is:

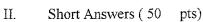
- <u>a)</u> Most stable (3) > (5) > (1) > (2) > (4) Least stable
- b) Most stable (3) > (4) > (5) > (1) > (2) least stable
- (4) > (2) > (1) > (3) least stable
- d) You can't tell which alkene is stable by looking at the structure. All alkenes are similarly stable.
- 7. Which of the following does not match the E2 reaction mechanism?

Energy diagram

- The E in E2 means elimination. b)
- Rate = k [substrate][nucleophile] c)
- All statements above are true about E2


- When you generate MO diagrams (where AO is atomic orbital and MO is molecular orbital), choose the one best statement.
- a) The number of AO must equal the number of MO.
- A node is a line through which the AO changes sign. b)
- c) The more nodes in an AO combination, the higher the energy of the MO.
- Bonding MO are lower in energy than the starting AO while antibonding MOs are higher in energy d) than the starting AO.
- All above statements are true.
- 9. For a Diels Alder reaction, choose the one incorrect statement
- The best dienophile has electron withdrawing substituents on the dienophile. a)
- Cis dienophile will result in a cis product and a trans dienophile will result in a trans product. b)
- Endo product is preferred because of π stacking of p orbitals of the double bonds.
- Diels Alder cannot do reactions with s-cis dienes unless the diene can rotate into s-trans.

10. For UV – Vis spectra:



- a) LUMO is π_3
- b) HOMO is 76 TI2
- c). UV transitions measure $\pi_2 \rightarrow \pi_3$
- (d) (a) and (c) are correct
- e) (b) and (c) are correct
- 11. Circle the one statement below which is **incorrect**.
 - a) In an energy diagram, a transition state is in general between either the reactant & product or between the reactant and the intermediate.
 - b) A heterocylic arrow looks like →
 - c) An "Electrophile" loves electrons while a "Nucleophile" loves nuclei
 - d) In an energy diagram, an intermediate is always at the top of an energy hill.

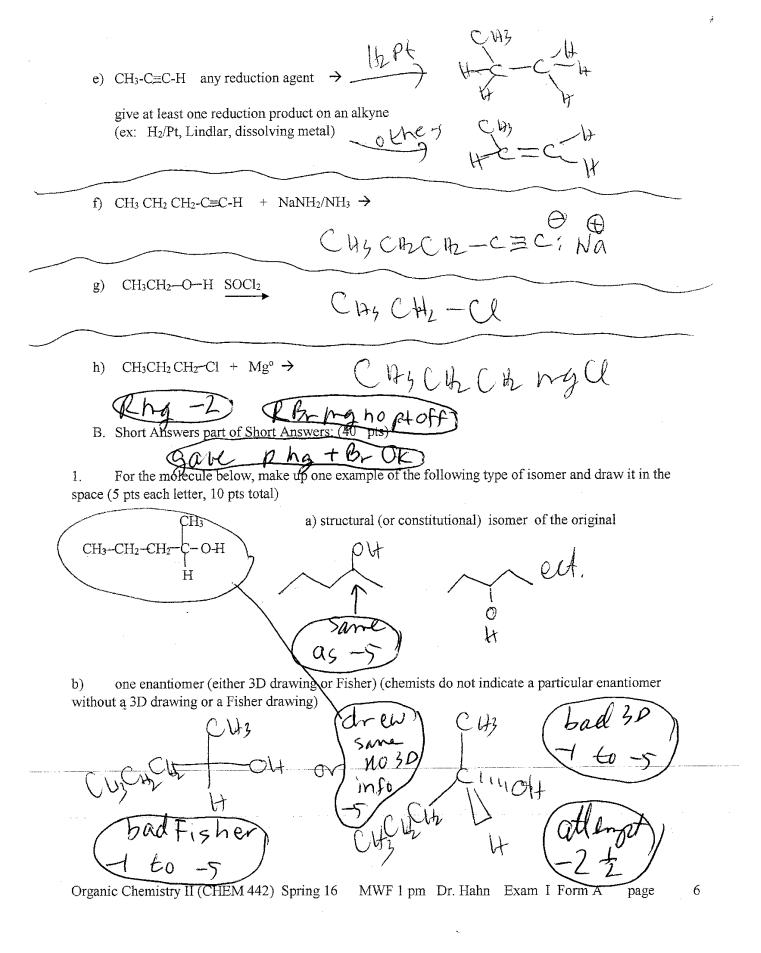
12. Put in order of most stable to least stable carbocation by choosing the one best choice:

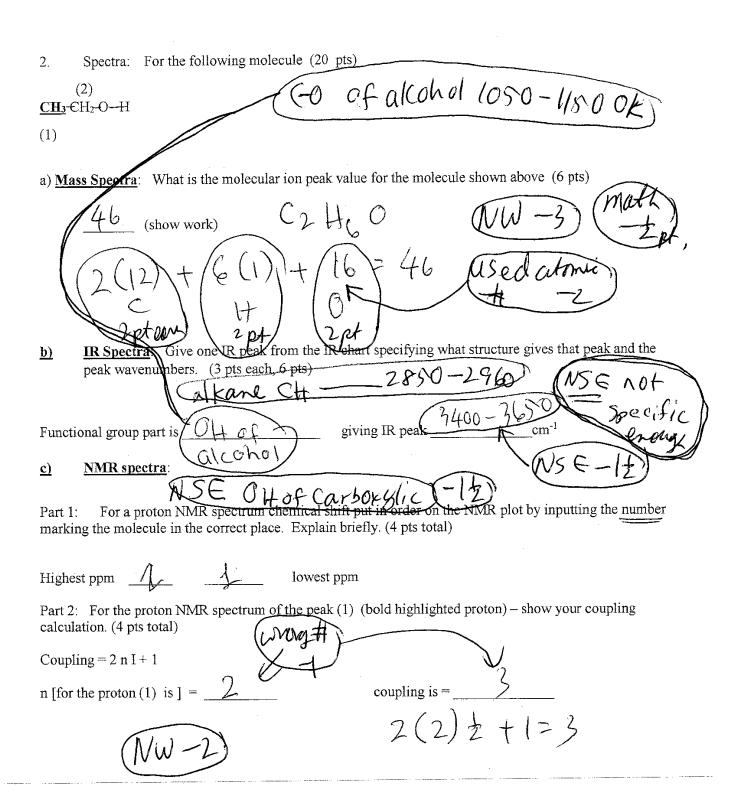
- a) Most stable carbocation to least stable carbocation is (2) > (1) > (3) > (4)
- b) Most stable carbocation to least stable carbocation is (3) > (1) > (2) > (4)
- c) Most stable carbocation to least stable carbocation is (4) > (2) > (1) > (3)
- d) Most stable carbocation to least stable carbocation is (1) > (2) > (3) > (4)

A. Reactions Part of Short Answers: (2 pts per reaction, 10 pts total) Wrong region

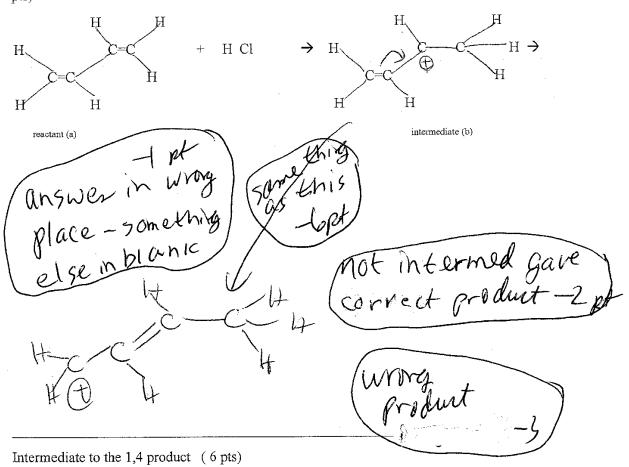
no partial Credit incorrel

Given the following, what is the the expected organic product? Choose to do 5 of the following reactions you want graded by circling the letter of the reaction. If you do not choose, I will just grade the first **FIVE**.

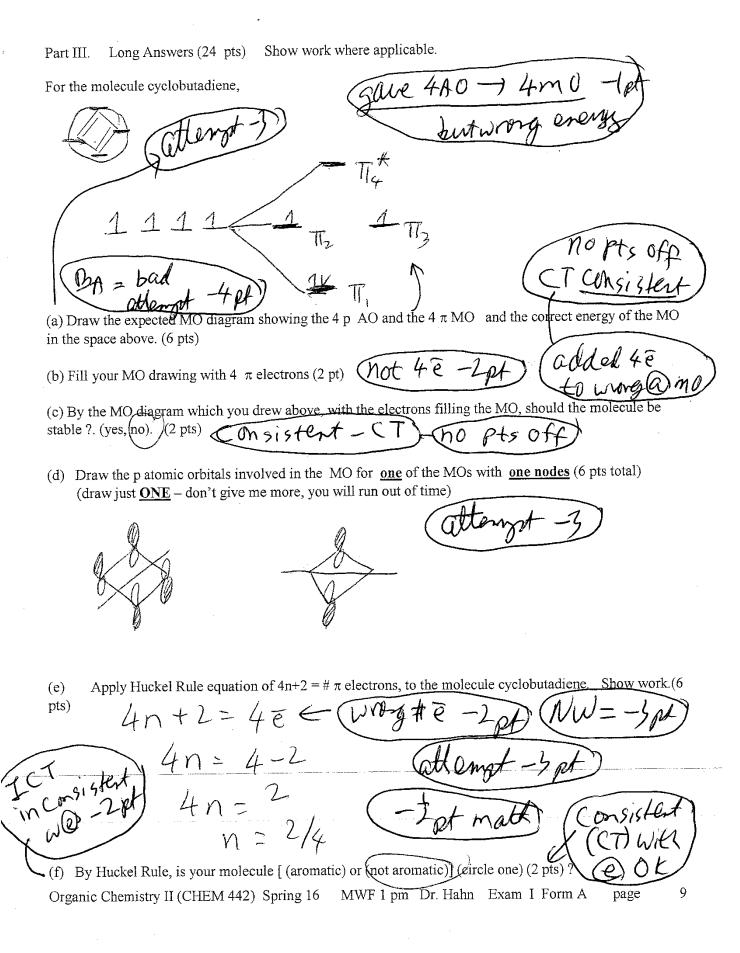

a)
$$CH_3$$
 H $+$ $HCl \rightarrow$ $+$ H $(Mark addition)$ $+$ C


c)
$$CH_3$$
 $C=C$ H $C=C$ H CH_2 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5

d)
$$CH_3$$
 CH_2 CH_3 CH_3 CH_4 CH_3 CH_4 CH_5 CH_5


5

Organic Chemistry II (CHEM 442) Spring 16 MWF 1 pm Dr. Hahn Exam I Form A page



3. a) Complete the following reaction mechanism: I have provided the first intermediate. Please show the <u>rearrangement to 1,4 product intermediate</u> in the space shown. 3 D drawings not needed (10 pts)

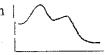
- b) Is the Saytzeff's Rule product the [(kinetic) or (thermodynamic product)] (circle one) (2 pts)
- c) For the 1,2 product will the energy of the final product be [higher) or (lower)] (circle one) than the energy of the final product for the 1,4 product (2 pts)

	Exam I Organic Chem II (CHEM 442) Spring 16 2/17 Dr. Hann MWF 1pill Follit B Examin
	Sign Name Print Name Print Name
	(1 pts name above print & sign, 1 pt scantron name) (100 pts, 11 pages + scantron sheet)
	Please show work on all questions for partial credit even on questions which do not specify. Please write legibly. If I cannot read your answer, I cannot grade your answer. (use back of exam for scratch paper – If
	you want me to grade something not in the space for the answer, clearly specify in writing. Telling me during
	the exam where to find the answer does not qualify because I will just vaguely remember someone telling me something during the exam not which one of 200 students told me what to grade on what page.)
	Circle answer on this form for backup to the scantron. There is no partial credit for showing work in the
	multiple choice. NA = not attempted NW = no work)
	In all questions on all parts of this exam, R is not equal to hydrogen but is an alkyl.
	I. Multiple Choice (2 pts each, 24 pts) Choose the <u>one</u> best statement in each question.
	1. For UV - Vis spectra: WFE = not far broug)
<u>†</u>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	1 To The NSE = not Specific enough
	a) LUMO is π_3^* b) HOMO is π_4^* π_{ν} c) UV transitions measure $\pi_2 \rightarrow \pi_3^*$
	d) (a) and (c) are correct e) (b) and (c) are correct $ \overline{ZCT} = i h \text{ Con sistles} $
	2 According to Zaitsev's (or sometimes spelled Saytzeff's) Rule, the most stable to least stable alkene is:
	Choose the one best statement. (R \neq H) most stable least
	R R R H R R H R R H
	H H R H H
	a) Most stable (3) > (5) > (1) > (2) > (4) Least stable b) Most stable (3) > (4) > (5) > (1) > (2) least stable c) Most stable (4) > (2) > (1) > (5) > (3) least stable d) You can't tell which alkene is stable by looking at the structure. All alkenes are similarly stable

3. Which of the following reactions does not show a syn product?

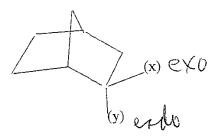
a)
$$CH_3$$
 CH_3 CH_4 CH_3 CH_4 CH_5 CH_5

c)
$$CH_3-C=C-CH_3 \xrightarrow{Pt^{\circ}/CaCO_3} \xrightarrow{H} \xrightarrow{H} C=C$$
 $CH_3 \xrightarrow{CH_3} CH_3$

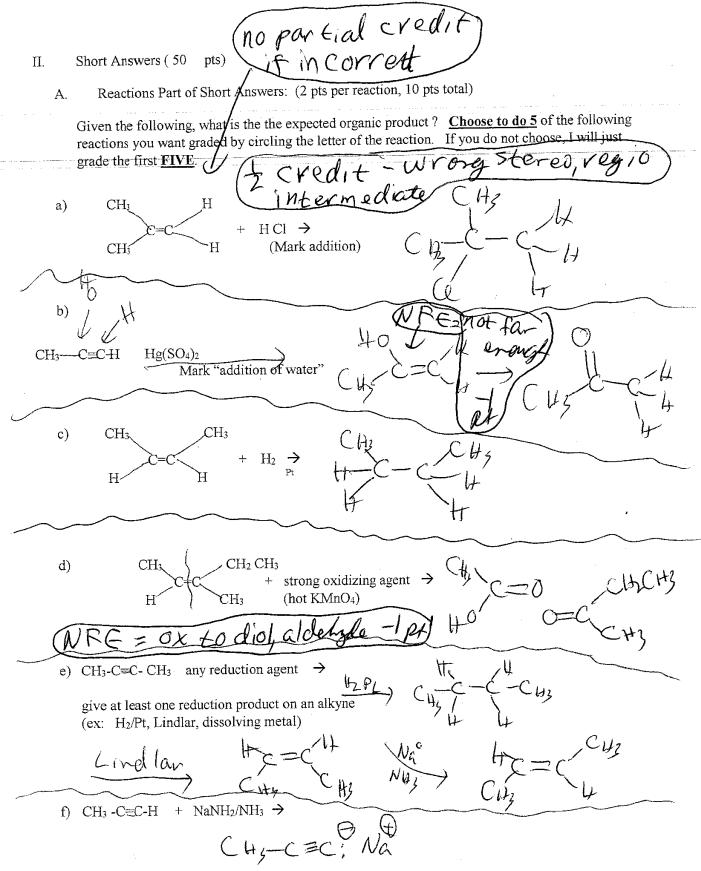

d)
$$CH_3$$
 CH_3 CH_3

4. The product of an S_N1 reaction of the following substrate is:

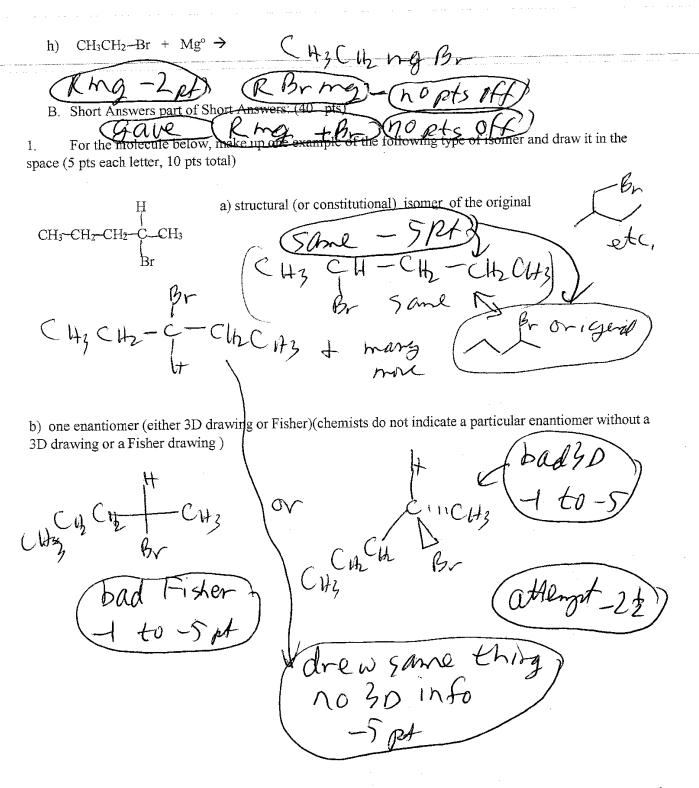
- 5. Circle the one statement below which is **incorrect**.
 - a) In an energy diagram, a transition state is in general between either the reactant & product or between the reactant and the intermediate.
 - b) A heterocylic arrow looks like →
 - c) An "Electrophile" loves electrons while a "Nucleophile" loves nuclei
 - (d) In an energy diagram, an intermediate is always at the top of an energy hill.
- 6. Put in order of most stable to least stable carbocation by choosing the one best choice:


ÇH3	Ļ	CH3 CH3 TOLK	 	east stable
ÇH₃ CH₃-C +	CH₃Ç +	CH3-C+541le	HC+	calle
H	H	CH ₃	п (4)) =00 =
(1)	(2)	(3)	(4)	

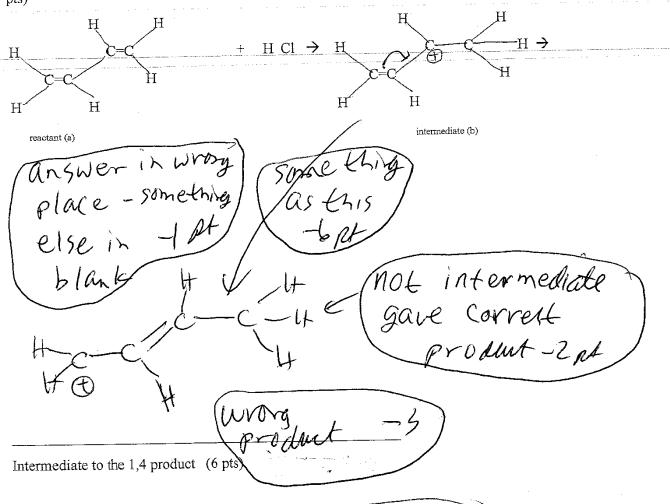
- a) Most stable carbocation to least stable carbocation is (2) > (1) > (3) > (4)
- (b) Most stable carbocation to least stable carbocation is (2) (2) (4)
- Most stable carbocation to least stable carbocation is (4) > (2) > (1) > (3)
- d) Most stable carbocation to least stable carbocation is (1) > (2) > (3) > (4)
- 7. Which of the following does not match the E2 reaction mechanism?
- a. Energy diagram



- b. The E in E2 means elimination.
- c. Rate = k [substrate][nucleophile]
- d. All statements above are true about E2
- 8. When you generate MO diagrams (where AO is atomic orbital and MO is molecular orbital), choose the one best statement.
- a) The number of AO must equal the number of MO.
- b) A node is a line through which the AO changes sign.
- c) The more nodes in an AO combination, the higher the energy of the MO.
- d) Bonding MO are lower in energy than the starting AO while antibonding MOs are higher in energy than the starting AO.
- (e) All above statements are true.
 - 9. For a Diels Alder reaction, choose the one incorrect statement
 - a) The best dienophile has electron withdrawing substituents on the dienophile.
 - b) Cis dienophile will result in a cis product and a trans dienophile will result in a trans product.
- Endo product is preferred because of π stacking of p orbitals of the double bonds.
- d) Diels Alder cannot do reactions with s-cis dienes unless the diene can rotate into s-trans.


- 10. About spectra which of the following statements is incorrect?
 - a) In proton NMR spectra the information that one derives is chemical shift, peak area and coupling which gives you information about the hydrocarbon structure.
 - b) In IR-spectra 4000 cm⁻¹ to 1500 cm⁻¹ is the functional group region in which peaks which are representative of functional groups appear so you can use IR to find out what functional groups are in the organic molecule.
 - c) In IR spectra 1500 cm⁻¹ to 400 cm⁻¹ is the fingerprint region which can be used to match the finger prints of authentic samples of a compound with an unknown sample of an organic compound.
 - UV Vis spectra is observed for conjugated organic molecules. More conjugated systems have larger energy gaps which results in larger λ_{max} ,
- 11. For the element **Sb**, circle the one incorrect statement.
 - a) The atomic mass is 121.76
 - b) The total number of electrons for a neutral atom is 5
 - c) The atomic number is 51
 - d) The number of valence electrons is 5
- 12 In the following molecule, which is endo/exo. Choose the best statement.

- a) (x) is exo
- b) (x) is endo
- c) (y) is endo
- d) There is no exo / endo in this molecule.
- (e) (a) and (c) are correct.



CH3CH2CH2-Cl

2. Spectra: For the following molecule (20 total pts)
(1) $CH_3 - CH_2 - C - CH_2 - CH_3$ (2) $CH_3 - CH_2 - CH_3 $
(2)
a) Mass Spectra: What s the molecular ion peak value for the molecule shown above (6 pts)
(show work) C5H10O (Used)
5(12) + 10(1) + 1(16) = 86 (atomic)
b) IR Spectra: Give one IR peak from the IR chart specifying what structure gives that peak and the peak wavenumbers. (3 pts each, 6 pts) CHAIKAN 2850-2960 OK
Functional group part is Functional group part is giving IR peak 1715 _ cm ⁻¹
c) NMR spectra: (8 pts total) =0 - 1670-1780 - 1215 E Specific
Part 1: For a proton NMR spectrum chemical shift put in order on the NMR plot by inputting the number marking the molecule in the correct place. Explain briefly. (4 pts)
Highest ppm 2 lowest ppm
Part 2: For the proton NMR spectrum of the peak (1) (bold highlighted proton) – show your coupling calculation. (4 pts total)
Coupling = 2 n I + 1
n [for the proton (1) is] = $\frac{1}{2}$ coupling is = $\frac{1}{2}$
2(3) \(\frac{1}{2} + 1 = 4 \(NW - \frac{1}{20} \)

3. a) Complete the following reaction mechanism: I have provided the first intermediate. Please show the <u>rearrangement to 1,4 product intermediate</u> in the space shown. 3 D drawings not needed (10 pts)

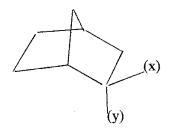
- b) Is the Saytzeff's Rule product the [(kinetic) or (thermodynamic product)] (circle one) (2 pts)
- c) For the 1,2 product will the energy of the final product be [(higher)) or (lower)] (circle one) than the energy of the final product for the 1,4 product (2 pts)

Please show work on all questions for partial credit even on questions which do not specify. Please write legibly. If I cannot read your answer, I cannot grade your answer. (use back of exam for scratch paper – If you want me to grade something not in the space for the answer, clearly specify in writing. Telling me during the exam where to find the answer does not qualify because I will just vaguely remember someone telling me something during the exam not which one of 200 students told me what to grade on what page.) Color

Circle answer on this form for backup to the scantron. There is no partial credit for showing work in the multiple choice.

In all questions on all parts of this exam, R is not equal to hydrogen but is an alkyl.

- I. Multiple Choice (2 pts each, 24 pts) Choose the one best statement in each question.
 - 1. Which of the following reactions does **not** show a **syn** product?


a)
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

d)
$$CH_3$$
 CH_3 CH_3

- 2. About spectra which of the following statements is incorrect?
- a) In proton NMR spectra the information that one derives is chemical shift, peak area and coupling which gives you information about the hydrocarbon structure.
- b) In IR spectra 4000 cm⁻¹ to 1500 cm⁻¹ is the functional group region in which peaks which are representative of functional groups appear so you can use IR to find out what functional groups are in the organic molecule.
- c) In IR spectra 1500 cm⁻¹ to 400 cm⁻¹ is the fingerprint region which can be used to match the finger prints of authentic samples of a compound with an unknown sample of an organic compound.
- d) UV Vis spectra is observed for conjugated organic molecules. More conjugated systems have larger energy gaps which results in larger λ_{max} ,
- 3. For the element **Sb**, circle the one incorrect statement.
 - a) The atomic mass is 121.76
 - b) The total number of electrons for a neutral atom is 5
 - c) The atomic number is 51
 - d) The number of valence electrons is 5
- 4. The product of an S_N1 reaction of the following substrate is:

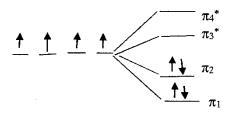
$$CH_3 \qquad H \qquad + \quad OH \rightarrow$$

5 In the following molecule, which is endo/exo. Choose the best statement.

- a) (x) is exo
- b) (x) is endo
- c) (y) is endo
- d) There is no exo / endo in this molecule.
- e) (a) and (c) are correct.

6 According to Zaitsev's (or sometimes spelled Saytzeff's) Rule, the most stable to least stable alkene is: Choose the one best statement. ($R \neq H$)

- a) Most stable (3) > (5) > (1) > (2) > (4) Least stable
- b) Most stable (3) > (4) > (5) > (1) > (2) least stable
- c) Most stable (4) > (2) > (1) > (5) > (3) least stable
- d) You can't tell which alkene is stable by looking at the structure. All alkenes are similarly stable.
- 7. Which of the following does not match the E2 reaction mechanism?


a) Energy diagram

- b) The E in E2 means elimination.
- Rate = k [substrate][nucleophile] c)
- d) All statements above are true about E2

page

- 8. When you generate MO diagrams (where AO is atomic orbital and MO is molecular orbital), choose the one best statement.
- a) The number of AO must equal the number of MO.
- b) A node is a line through which the AO changes sign.
- c) The more nodes in an AO combination, the higher the energy of the MO.
- d) Bonding MO are lower in energy than the starting AO while antibonding MOs are higher in energy than the starting AO.
- e) All above statements are true.
- 9. For a Diels Alder reaction, choose the one incorrect statement
- a) The best dienophile has electron withdrawing substituents on the dienophile.
- b) Cis dienophile will result in a cis product and a trans dienophile will result in a trans product.
- Endo product is preferred because of π stacking of p orbitals of the double bonds.
- d) Diels Alder cannot do reactions with s-cis dienes unless the diene can rotate into s-trans.
 - 10. For UV Vis spectra:

- a) LUMO is π_3^*
- b) HOMO is π_4 *
- c) UV transitions measure $\pi_2 \rightarrow \pi_3^*$
- d) (a) and (c) are correct
- e) (b) and (c) are correct
- 11. Circle the one statement below which is **incorrect**.
 - a) In an energy diagram, a transition state is in general between either the reactant & product or between the reactant and the intermediate.
 - b) A heterocylic arrow looks like →
 - c) An "Electrophile" loves electrons while a "Nucleophile" loves nuclei
 - d) In an energy diagram, an intermediate is always at the top of an energy hill.

12. Put in order of most stable to least stable carbocation by choosing the one best choice:

- a) Most stable carbocation to least stable carbocation is (2) > (1) > (3) > (4)
- b) Most stable carbocation to least stable carbocation is (3) > (1) > (2) > (4)
- c) Most stable carbocation to least stable carbocation is (4) > (2) > (1) > (3)
- d) Most stable carbocation to least stable carbocation is (1) > (2) > (3) > (4)

II. Short Answers (50 pts)

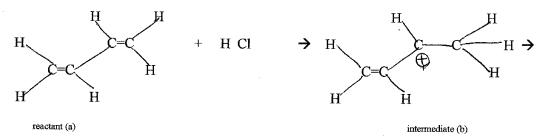
A. Reactions Part of Short Answers: (2 pts per reaction, 10 pts total)

Given the following, what is the the expected organic product? Choose to do 5 of the following reactions you want graded by circling the letter of the reaction. If you do not choose, I will just grade the first **FIVE**.

b)

c)
$$CH_3$$
 CH_2CH_3 $+$ H_2 $\xrightarrow{p_1}$

d)
$$CH_3$$
 CH_2 CH_3 + strong oxidizing agent \rightarrow CH_3 CH_2 CH_3 CH_4 (hot $KMnO_4$)


- e) CH₃-C≡C-H any reduction agent →
 give at least one reduction product on an alkyne (ex: H₂/Pt, Lindlar, dissolving metal)
- f) CH₃ CH₂ CH₂-C=C-H + NaNH₂/NH₃ >
- g) CH₃CH₂—O—H SOCl₂
- h) $CH_3CH_2CH_2-Cl + Mg^{\circ} \rightarrow$
- B. Short Answers part of Short Answers: (40 pts)
- 1. For the molecule below, make up one example of the following type of isomer and draw it in the space (5 pts each letter, 10 pts total)

a) structural (or constitutional) isomer of the original

b) one enantiomer (either 3D drawing or Fisher) (chemists do not indicate a particular enantiomer without a 3D drawing or a Fisher drawing)

2. Spectra: For the following molecule (20 pts)
(2) <u>CH</u> ₃ -CH ₂ -O—II
(1)
a) Mass Spectra: What is the molecular ion peak value for the molecule shown above (6 pts)
(show work)
<u>IR Spectra</u> : Give one IR peak from the IR chart specifying what structure gives that peak and the peak wavenumbers. (3 pts each, 6 pts)
Functional group part is giving IR peakcm ⁻¹
c) NMR spectra:
Part 1: For a proton NMR spectrum chemical shift put in order on the NMR plot by inputting the number marking the molecule in the correct place. Explain briefly. (4 pts total)
Highest ppm lowest ppm
Part 2: For the proton NMR spectrum of the peak (1) (bold highlighted proton) – show your coupling calculation. (4 pts total)
Coupling = 2 n I + 1
n [for the proton (1) is] = coupling is =

3. a) Complete the following reaction mechanism: I have provided the first intermediate. Please show the <u>rearrangement to 1,4 product intermediate</u> in the space shown. 3 D drawings not needed (10 pts)

Intermediate to the 1,4 product (6 pts)

- b) Is the Saytzeff's Rule product the [(kinetic) or (thermodynamic product)] (circle one) (2 pts)
- c) For the 1,2 product will the energy of the final product be [(higher) or (lower)] (circle one) than the energy of the final product for the 1,4 product (2 pts)

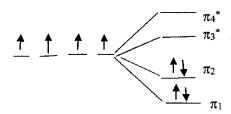
Part III. Long Answers (24 pts) Show work where applicable.
For the molecule cyclobutadiene,
(a) Draw the expected MO diagram showing the 4 p AO and the 4 π MO and the correct energy of the MO in the space above. (6 pts)
(b) Fill your MO drawing with 4 π electrons (2 pt)
(c) By the MO diagram which you drew above, with the electrons filling the MO, should the molecule be stable? (yes, no). (2 pts)
(d) Draw the p atomic orbitals involved in the MO for <u>one</u> of the MOs with <u>one nodes</u> (6 pts total) (draw just <u>ONE</u> – don't give me more, you will run out of time)
(e) Apply Huckel Rule equation of $4n+2=\#\pi$ electrons, to the molecule cyclobutadiene. Show work.(6 pts)

	Table 12.1 Characteristic in Apsorptions of Some Control Control		250 5		
Functional Group	Absorption (cm ⁻¹)	Intensity	Functional Group	Absorption (cm ⁻¹)	Intensity
Alkane C-H	2850-2960	Medium	Amine N-H C-N	3300-3500 1030-1230	Medium Medium
Alkene =C-H C=C	3020-3100 1640-1680	Medium Medium	Carbonyl compound C=0	1670–1780	Strong Strong
Alkyne =C−H C≡C	3300 2100-2260	Strong Medium	Ketone Ester Amide	1715 1735 1690	Strong Strong Strong
Alkyl halide C-Cl C-Br	009-009	Strong Strong	Carboxylic acid Carboxylic acid O-H	1710 2500-3100	Strong Strong, broad
Alcohol 0-H C-0	3400–3650 1050–1150	Strong, broad Strong	Nitrile C=N	2210-2260	Medium
Arene CH Aromatic ring	3030 1660–2000 1450–1600	Weak Weak Medium	NO_2	1540	Strong

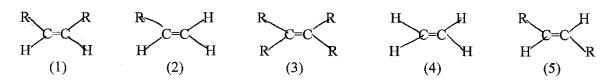
Periodic Table of the Elements

					ここ	<u> </u>			5)	ノ フ フ			2			
	7					,											7	80
•	-																	2
_	<u></u>	ţ											*			-		He H
	1,00794	7 K											X X	4.4	2.4	6.A	1,00794	4.002602
	3	4											5	9	7	œ	6	01
, (ij	Be											M	ر ا	Z	0	ſΤι	Ne
1	6.941	9.012182							Ş				10.811		14,00674	15.9994	18,9984032	20.1797
	11	12							9 X			.	13		15	16	17	87
a	Na	Mg	2 B	777	213	U	NA				i B	2 B	Al	Si	Д			Ar
	22.989770	24,3050	2	1		ر م	_				2	7-7	26.981538	28.0855	30.973761	32.066	1	39,948
	61	750	21	22		24	25	26	27	28	29	30	31	32	33		35	38
4	\simeq	g C	Sc	\prod_{i}		Ü	Mn	ب ئ	Ŝ	Z	Çn	Zn	g B	Ge	As	Se		Z.
-	39.0983	40,078	44.955910	47.867		51.9961	54,938049	55.845	58.933200	58.6934	63.546	62.39	69.723	72.61	74.92160		79.904	83.80
	37	38	39	40		42	43	44	45	46	47	48	6	50	51		53	54
5	Rb	S.	∹	Zr		Mo	Jc	Ru	Zh Zh	Pd	Ag	20	In	Sn	Sp		,_ -	Xe
	85.4678	87.62	88.90585	91,224		95.94	(86)	101.07	102.90550	106.42	107.8682	112.411	114,818	118.710	121.760		126.90447	131.29
`	55	56	57	72		74	7.5	76	77	78	79	80	81	82	£8		\$3	98
ع	Cs	Ba	Ľa	H	Ta	≫	Re	Os	Ä	Pt	Au	Hg	H	Pb	Bi	Po	At	Rn
	132,9054	5 137,327	138,9055	178.49		183,84	186.207	190,23	192,217	195.078	196,96655		204.3833	207.2	208,98038		(210)	(222)
9	8.7	88	68	104		901	101	108	109	011	111	112		114		911		118
	Ŧ	Ra	Ac	_ Kf		Ω	Bh	Hs	Mft					(289)				
	(223)	(226)	(227)	(261)		(263)	(262)	(265)	(596)	(692)	(272)	(277)		(287)		(289)	- 7	(293)

Ľu 174,967	103	Lr (262)	
Yb 173.04	102	N (82)	
-Tm 168.93421	101	Md (882)	
Er.	100	Fm	
Ho 164.93032	66	Es (223)	
Dy 162.50	86	Cf. (821)	
Tb	16	Bk	
Gd	96	Chi	
E11	95	Am (243)	
Sm 150.36	94	Pu (244)	
Pm	16,	S (E	
Nd 424	92	U 238,0289	
Pr 140.90765	16	Pa 231.03588	
Ce 140.116	06	Th	
	Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb 40,90765 14424 (145) 150.36 151.964 157.25 1138.92534 162.50 164.93032 167.26 168.93421 173.04	Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb 140,00765 14424 (145) 150,346 151,346 157,25 158,92534 162,50 164,93022 167,26 168,93421 173.04	Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb 140.90765 144.24 (145) 150.36 151.964 157.25 158.92534 162.50 164.93032 167.26 168.93421 173.04 91 92 94 95 96 97 98 99 100 101 102 Pa U Np Pu Am Cm Bk Cf ES Fm Md No 231.05588 238,0289 (249) (243) (247) (247) (251) (252) (253) (259) (259)


Exam I Organic Chem II (CHEM 442) Spring 16	2/17	Dr. Hahn MWF 1pm Form B Exa	am#
Sign Name	Pri	nt Name	
(1 pts name above print & sign, 1 pt scantron nam	e) (100	0 pts, 11 pages + scantron sheet)	

Please show work on all questions for partial credit even on questions which do not specify. Please write legibly. If I cannot read your answer, I cannot grade your answer. (use back of exam for scratch paper – If you want me to grade something not in the space for the answer, clearly specify in writing. Telling me during the exam where to find the answer does not qualify because I will just vaguely remember someone telling me something during the exam not which one of 200 students told me what to grade on what page.)


Circle answer on this form for backup to the scantron. There is no partial credit for showing work in the multiple choice.

In all questions on all parts of this exam, R is not equal to hydrogen but is an alkyl.

- I. Multiple Choice (2 pts each, 24 pts) Choose the <u>one</u> best statement in each question.
- 1. For UV Vis spectra:

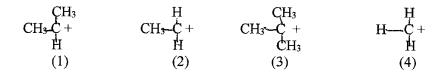
- a) LUMO is π_3^*
- b) HOMO is π_4 *
- c) UV transitions measure $\pi_2 \rightarrow \pi_3^*$
- d) (a) and (c) are correct
- e) (b) and (c) are correct
- 2 According to Zaitsev's (or sometimes spelled Saytzeff's) Rule, the most stable to least stable alkene is: Choose the one best statement. ($R \neq H$)

- a) Most stable (3) > (5) > (1) > (2) > (4) Least stable
- b) Most stable (3) > (4) > (5) > (1) > (2) least stable
- c) Most stable (4) > (2) > (1) > (5) > (3) least stable
- d) You can't tell which alkene is stable by looking at the structure. All alkenes are similarly stable.

3. Which of the following reactions does **not** show a **syn** product?

a)
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

c)
$$CH_3-C=C-CH_3$$
 $Pt^{\circ}/CaCO_3$ H $C=C$ CH_3 CH_3


d)
$$CH_3$$
 CH_3 CH_3

4. The product of an S_N1 reaction of the following substrate is:

5. Circle the one statement below which is **incorrect**.

- a) In an energy diagram, a transition state is in general between either the reactant & product or between the reactant and the intermediate.
- b) A heterocylic arrow looks like →
- c) An "Electrophile" loves electrons while a "Nucleophile" loves nuclei
- d) In an energy diagram, an intermediate is always at the top of an energy hill.

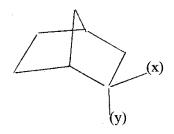
6. Put in order of most stable to least stable carbocation by choosing the one best choice:

- a) Most stable carbocation to least stable carbocation is (2) > (1) > (3) > (4)
- b) Most stable carbocation to least stable carbocation is (3) > (1) > (2) > (4)
- c) Most stable carbocation to least stable carbocation is (4) > (2) > (1) > (3)
- d) Most stable carbocation to least stable carbocation is (1) > (2) > (3) > (4)

7. Which of the following does not match the E2 reaction mechanism?

a. Energy diagram

- b. The E in E2 means elimination.
- c. Rate = k [substrate][nucleophile]
- d. All statements above are true about E2


8. When you generate MO diagrams (where AO is atomic orbital and MO is molecular orbital), choose the one best statement.

- a) The number of AO must equal the number of MO.
- b) A node is a line through which the AO changes sign.
- c) The more nodes in an AO combination, the higher the energy of the MO.
- d) Bonding MO are lower in energy than the starting AO while antibonding MOs are higher in energy than the starting AO.
- e) All above statements are true.

9. For a Diels Alder reaction, choose the one incorrect statement

- a) The best dienophile has electron withdrawing substituents on the dienophile.
- b) Cis dienophile will result in a cis product and a trans dienophile will result in a trans product.
- Endo product is preferred because of π stacking of p orbitals of the double bonds.
- d) Diels Alder cannot do reactions with s-cis dienes unless the diene can rotate into s-trans.

- 10. About spectra which of the following statements is incorrect?
 - a) In proton NMR spectra the information that one derives is chemical shift, peak area and coupling which gives you information about the hydrocarbon structure.
 - b) In IR spectra 4000 cm⁻¹ to 1500 cm⁻¹ is the functional group region in which peaks which are representative of functional groups appear so you can use IR to find out what functional groups are in the organic molecule.
 - c) In IR spectra 1500 cm⁻¹ to 400 cm⁻¹ is the fingerprint region which can be used to match the finger prints of authentic samples of a compound with an unknown sample of an organic compound.
 - d) UV Vis spectra is observed for conjugated organic molecules. More conjugated systems have larger energy gaps which results in larger λ_{max} ,
- 11. For the element **Sb**, circle the one incorrect statement.
 - a) The atomic mass is 121.76
 - b) The total number of electrons for a neutral atom is 5
 - c) The atomic number is 51
 - d) The number of valence electrons is 5
- 12 In the following molecule, which is endo/exo. Choose the best statement.

- a) (x) is exo
- b) (x) is endo
- c) (y) is endo
- d) There is no exo / endo in this molecule.
- e) (a) and (c) are correct.

II. Short Answers (50 pts)

A. Reactions Part of Short Answers: (2 pts per reaction, 10 pts total)

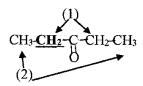
Given the following, what is the the expected organic product? Choose to do 5 of the following reactions you want graded by circling the letter of the reaction. If you do not choose, I will just grade the first **FIVE**.

b)

Mark "addition of water"

c)
$$CH_3$$
 CH_3 $+$ $H_2 \rightarrow H$

e) CH₃-C=C-CH₃ any reduction agent →


give at least one reduction product on an alkyne (ex: H₂/Pt, Lindlar, dissolving metal)

f) CH₃ -C
$$\equiv$$
C-H + NaNH₂/NH₃ \rightarrow

- g) CH₃CH₂ CH₂-O-H SOCl₂
- h) CH_3CH_2 —Br + $Mg^o \rightarrow$
- B. Short Answers part of Short Answers: (40 pts)
- 1. For the molecule below, make up one example of the following type of isomer and draw it in the space (5 pts each letter, 10 pts total)

b) one enantiomer (either 3D drawing or Fisher)(chemists do not indicate a particular enantiomer without a 3D drawing or a Fisher drawing)

2. Spectra: For the following molecule (20 total pts)

a) Mass Spectra: What is the molecular ion peak value for the molecule shown above (6 pts)

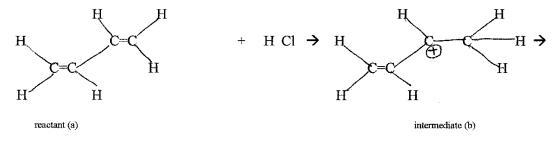
____(show work)

<u>IR Spectra</u>: Give one IR peak from the IR chart specifying what structure gives that peak and the peak wavenumbers. (3 pts each, 6 pts)

Functional group part is _____ giving IR peak _____ cm⁻¹

c) NMR spectra: (8 pts total)

Part 1: For a proton NMR spectrum chemical shift put in order on the NMR plot by inputting the <u>number</u> marking the molecule in the correct place. Explain briefly. (4 pts)


Highest ppm lowest ppm

Part 2: For the proton NMR spectrum of the peak (1) (bold highlighted proton) – show your coupling calculation. (4 pts total)

Coupling = 2 n I + 1

n [for the proton (1) is] = _____ coupling is = ____

3. a) Complete the following reaction mechanism: I have provided the first intermediate. Please show the <u>rearrangement to 1,4 product intermediate</u> in the space shown. 3 D drawings not needed (10 pts)

Intermediate to the 1,4 product (6 pts)

- b) Is the Saytzeff's Rule product the [(kinetic) or (thermodynamic product)] (circle one) (2 pts)
- c) For the 1,2 product will the energy of the final product be [(higher) or (lower)] (circle one) than the energy of the final product for the 1,4 product (2 pts)

Part III. Long Answers (24 pts) Show work where applicable.

For the molecule cyclopropenyl cation,

- (a) Draw the expected MO diagram showing the 3 p AO and the 3π MO and the correct energy of the MO in the space above. (6 pts)
- (b) Fill your MO drawing with 2 π electrons (2 pts)
- (c) By the MO diagram which you drew above, with the electrons filling the MO, should the molecule be stable?. (yes, no). (2 pts)
- (d) Draw the p atomic orbitals involved in the MO for one of the MOs with one nodes (6 pts total) (draw just **ONE** – don't give me more, you will run out of time)

Apply Huckel Rule equation of $4n+2 = \# \pi$ electrons, to the molecule cyclopropenyl cation. Show (e) work. (6 pts)

(f) By Huckel Rule, is your molecule [(aromatic) or (not aromatic)] (circle one) (2 pts)?

Functional Group	Absorption (cm $^{-1}$)	Intensity	Functional Group	Absorption (cm ⁻¹)	Intensity
Alkane		eren en e	Amine		
C-H	2850-2960	Medium	7 Z X	3300-3500 1030-1230	Medium Medium
Alkene			(000110001	MCCICIIII
The state of the s	3020-3100	Medium	Carbonyl compound		
C=C	1640-1680	Medium	C=0	1670-1780	Strong
<u>.</u>			Aldehyde	1730	Strong
Alkyne			Ketone	1715	Strong
	3300	Suong	Ester	1735	Strong
	2100-2200	Medidii	Amide	1690	Strong
Alkyl halide			Carboxylic acid	1710	Strong
C - <u>C</u>	600-800	Strong	Carboxvlic acid		
C-Br	500-600	Strong	0-H	2500-3100	Strong, broad
Alcohol	3400_3650	Strong broad	Nitrile		
CO	1050-1150	Strong	C = N	2210-2200	Mediuin
Arene			Nitro	1540	Strong
C-H	3030	Weak	702	1040	0.10
Aromatic ring	1660-2000	Weak			
			_		

Periodic Table of the Elements

~	2		€	`		5			4			الما	`	,	2		,			1 1
Fr (223)	87	132.90545	Cs	55	1	Rb		I				Na							₹ ⊶	7
(226)	88	137,327	Ba	56	87.62	Sr	38	40,078	Ca	20	24.3050	Mg	12	9.012182	Ве	4	7	ک 7		
Ac (227)	89	138.9055	La	57	88.90585	K	39	44,955910	Sc	21	7	, ;								
Rf (261)	104	178.49	H	72	91,224	$-Z_{\rm T}$	40	47.867		22	キン	<u>}</u>								
Db (262)	105	180.9479	با	73	92.90638	N	41	50.9415	V	z	1	52								
Sg (263)	106	183,84	W	74	95.94	Mo	42	51.9961	Ω	24	20	2								
Bh (262)	107	186.207	Re	75	(98)	Te	£	54.938049	Mn	25	71.	グス								
Hs (265)	108	190.23	0s	76	101.07	Ru	44	55.845	Ee	26		\neg								
Mt (266)	109	192.217	Ħ	77	102.90550	Rh	45	58,933200	Çę	27			0 × 0	7						
(269)	110	195.078	Ţ	78	106.42	þď	46	58.6934	Z.	28										
(272)	Ξ	196.96655	Au	79	107.8682	Ag	47	63,546	Cu	29	7	- ->								
(277)	112		Ho						Zn		40									
		204.3833]]	81	114.818	h	49	69.723	Ga	31	26.981538	Al	13	10.811	M	5	577	<u>y</u>		
(289) (287)	114	207.2	Pb	82	118.710	Sn	50	72.61	Ge	32	28.0855	S:	14	. 12.0107	<u>a</u>	6	4.A			
<u> </u>		208,98038	Pb Bi	83	121.760	Sb	15	74.92160	As	33	30.973761	٣	15	14.00674	Z,	7	5.4	}		
(289)	911		Po	84	127.60	 H			Se		32.066		16	15.9994	0	8	6.4	*		
		(210)	At	28	126.90447	 (53	79.904	Br	35	35.4527	Ω	17	18.9984032	زير			Щ		7 A
(293)	118	(222)	Rn	86	131,29	Xe	54	83,80	Kr	36	39.948	Ar	18	20.1797	Ne	10	4.002602	He	2	*. 03
																				7

(258)	(257)		(251)	(247)	(247)	(243)	(244)	(237)	238,0289	231.03588	232,0381
	Fm	Es	Cf	Bk	Cm	Am	Pu	Np		Pa	Th
	100	99	98	977	.96	95	94	93	92	91	90
,	167.26	164.93032	162.50	158.92534	157.25	151.964	150,36	(145)	144.24	140.90765	140.116
mI	臣	Но	Dy	7	GG GG	Eu	Sm	Pm	M	P.	Ce
	88	67	99	65	Z	ඩ	62	61	60	59	58