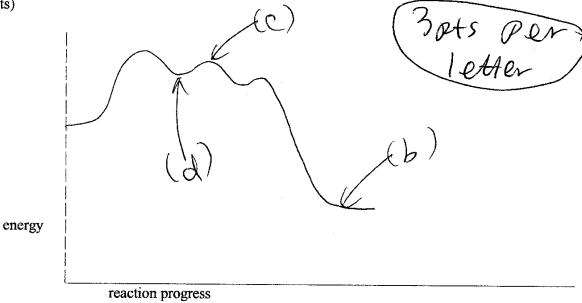
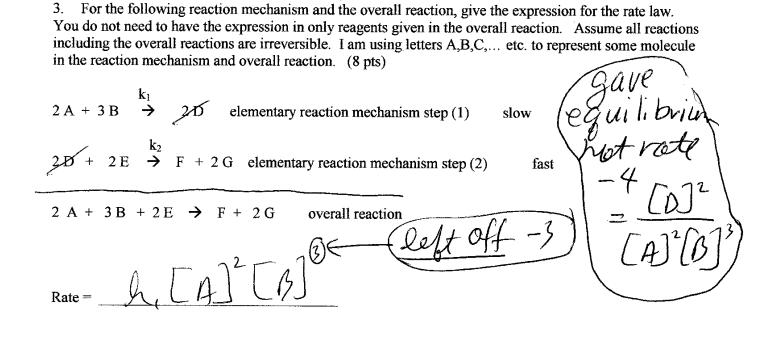
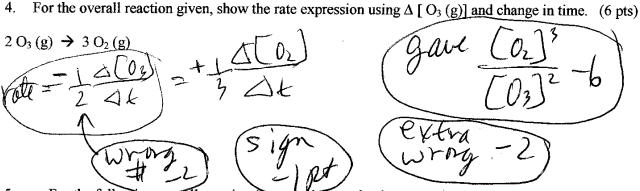


1

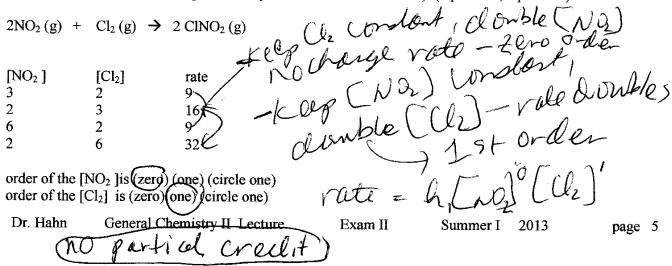
WW = 2(9) $WW = 2(75.5)4) Place the following compounds in order of increasing strength of intermolecular forces.$	4) <u>C</u>
4) Place the following compounds in order of increasing strength of intermolecular forces. $F_2 \qquad I_2 \qquad Cl_2 \qquad \qquad$	
A) F2 < I2 < C12 5 mallett force - all 3	
B) Cl2 < F2 < I2 dispersion	
C)F2 < Cl2 < I2 moletule MUS Wille	
E) $I_2 < Cl_2 < F_2$	
5) Identify triple point.	5)
(A) The temperature and pressure where liquid, solid, and gas are equally stable and are in equilibrium.	•
B) The temperature that is unique for a substance.	
C) The temperature, pressure, and density for a gas.	
D) The temperature at which the solid and liquid co-exist.	
E) The temperature at which the boiling point equals the melting point.	
6) What is the molality of a glucose solution prepared by dissolving 18.0 g of glucose, C ₆ H ₁₂ O ₆ , in	6)
125.9 g of water? [FW (glucose) = 180.18 g/mol]	, —
A) $0.143 m$ B) $0.695 m$ C) $0.793 m$ D) $7.94 \times 10^{-4} m$	
7) Give the term for the emount of colute in male and Kasalita	- C
7) Give the term for the amount of solute in moles per Kg of solution. A) molarity B) mole fraction C) mass percent D) mole percent (E) molality (125,99 x 169)	7)
B) mole fraction	
C) mass percent	
D) mole percent	
(E) inolality	
8) Which of the following compounds exhibits hydrogen bonding?	8)
A) CH3OCH3 B) HI (C) NH3 D) CH3CI	0)
9) Parts per billion requires a multiplication factor of	
9) Parts per billion requires a multiplication factor of	9)
A) 10^{-3} B) 10^3 C) 10^9 D) 10^6 E) 10^{-6}	,
10) Define freezing	
10) Define freezing. A) the phase transition from gos to solid	10)
A) the phase transition from gas to solid B) the phase transition from liquid to gas	
C) the phase transition from solid to gas	
D) the phase transition from gas to liquid	
(E) the phase transition from liquid to solid	


b) C6H14 and C10H20	dissolves like" oth have dis persion fo	11) <u>B</u> r(e Only
12) The rate-determining elementary reaction s A) always the last step B) the fast step C) always the second step D) the faster step E) the slowest step	step in a reaction mechanism.	12) <u></u>
13) Place the following compounds in order of the following compounds in order	<i>p</i>	13) <u>E</u>


Part II Short Answer: Write the word or phrase or circle the choice that best completes each statement or answers the question. Some questions may require that you show work. If you do not show work, you may lose points. (40 pts)



- (a) For the molecule shown, draw a dipole moment arrow for each bond in the molecule. (The dipole moment arrow should look like (+)
- (b) The dipole moment for the molecule as a whole is [(zero) or (not zero)] (circle one)
- (c) The intermolecular force for this molecule is [(London force) or (dipole-dipole) or (hydrogen bonding)] (circle one)


2. For a reaction illustrated below, label (a) reactant (b) product (c) transition state (d) intermediate by filling in the blank with the appropriate letters. You may use each letter one time, many times or not at all. (9 pts)

5. For the following overall reaction (not reaction mechanism step, the overall reaction), Given the concentrations and rates, give the order of the reactant by circling the order for the reagent given. You should assume an irreversible reaction. (note: I made up these reaction rate and concentrations to illustrate the point so the rate will not experimentally fit the date shown below.) (4 pts each, 8 pts total)

Part III. Long Answer Please show work for full credit and to receive partial credit. (35 pts) **** Please attempt every problem for partial credit. You will get no partial credit if you just rewrite the question with no change in anything.****

1. If you want to heat 36.7 grams of liquid water from 75.2 °C to 100.0 °C, what is the heat required, q? $(q = m C \Delta T, C_{water} = 4.184 \text{ J/g}^{\circ}C_{1}(10 \text{ pts})$

$$\Delta T = 100.0^{\circ} C - 15.2^{\circ} C = 24.5^{\circ} C$$

$$Q = (36.79)(4.184 \frac{J}{8^{\circ} C})(24.5^{\circ} C)$$

For a 0.125 molal aqueous Fe₂(SO₄)₃ solution, what is the boiling point elevation? ($\Delta T_b = i$ x m x K_b $K_b = 0.512$ °C/m, You should assume complete dissociation of the Fe₂(SO₄)₃ in water. (9 pts)

What is the boiling point of the solution in part (a). (boiling point of water is 100.0 °C) (2 pts) (b)

- Dr. Hahn General Chemistry II Lecture
- Exam II
- Summer I 2013

You have 23.7 grams of Li Br (molar mass = 86.84 g/mol) and dissolve it in 500.0 mL of water which results in a 520.2 mL of total solution (density of pure water = 1.00 g / mL). (I made up these numbers so these numbers do not fit experimental data.) (12 pts, 6 pts each)
(a) What is the molarity (M) of the solution? (show work) $M > \frac{\# moles \ G}{R} = \frac{1}{2} $
moles Libr= 24.7g x prollibr = 02021
$X \cap X \cap$
liters = 520,2 ml x 1 liter = 0.52020 (iBr)
Mc 0,273 mg CiB
0,5202l = 0,5248M (21)
Mc 0.213 md CiB2 = 0.5248 M = (2pt) (molarity) (2pt)
(b) What is the molality (m) of the solution? (show work)
m2 # moles solute (OP)
Ky solvent
the moles = 0,213 md Li Br
kg solvent = 500.0 kg 100gko x 1 kg = 2
kg90lust = 0,5000 kg (2pt)
m= <u>0.213 md Liler</u> = 0.546 m e (2M) 0.5000 kg (molality)

Exam II	General Chemistry II (CHEM 102)	Summer I	Dr. Hahn	Exam #	
Name		(print) Nar	ne		(sign)
choice qu obviousl	ow work for partial credit and full cre lestions have no partial credit. Pleas y cannot grade it. (1 pts print and sigr I clearly tell me where the remaining a	se write anything nexam) If you	you want graded run out of space	I legibly. If I cannot rea	ad your work, I
Part I N pts per q	MULTIPLE CHOICE. Choose the one uestion, 26 pts pts total)	alternative that l	pest completes t	he statement or answers	the question. (2
1	Given the following balanced equation	on, determine the	rate of reaction v	with respect to [NH3].	1)
	$N_2(g) + 3 H_2(g) \rightarrow$	2 NH ₃ (g)			
27	A) Rate = $-\frac{2\Delta[NH_3]}{\Delta t}$ B) Rate = $+\frac{1}{2}\frac{\Delta[NH_3]}{\Delta t}$ C) Rate = $-\frac{1}{2}\frac{\Delta[NH_3]}{\Delta t}$ D) Rate = $+\frac{2\Delta[NH_3]}{\Delta t}$ E) It is not possible to determine we dentify the solute with the highest v. A) NH ₄ Cl B) Al ₂ (SO ₄) ₃ C) K ₂ CO ₃ D) HO CH ₂ CH ₂ OH		rmation.		2)
3)	E) LiCl Place the following compounds in or I. CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ II A) III < I < II B) III < II < I C) I < III < II D) I < II < III E) II < III < I	der of <u>increasing</u> CH3 CH3-CCH3 CH3	C H	I3 CH2CH3	3)

1

4) Place the follow	ing con	pounds in c	order of <u>increas</u>	ing strengt	h of intermole	cular forces.	4)
F ₂	I ₂	Cl ₂					
A) $F_2 < I_2 <$	Cl ₂						
B) $Cl_2 < F_2$	< I ₂						
C) $F_2 < Cl_2$	< I ₂						
D) $I_2 < F_2 <$	Cl ₂						
E) $I_2 < Cl_2$	< F ₂						
5) Identify triple p	oint.						5)
A) The tempe equilibriur		nd pressure	where liquid, s	solid, and g	as are equally	stable and are in	•
			e for a substanc				
C) The tempe	rature, j	pressure, an	d density for a g	gas.			
			solid and liquid		1.1		
E) The tempe	rature a	t which the	boiling point eq	luals the m	elting point.		
						lucose, C ₆ H ₁₂ O ₆ , in	6)
125.9 g of water	? [FW		_	-	•		
A) 0.143 m		B) 0.699	5 m	C) 0.793	3 m	D) $7.94 \times 10^{-4} m$	
7) Give the term fo A) molarity B) mole fracti C) mass perce D) mole perce E) molality	on ent	nount of solu	ate in moles per	Kg of 50	ol vent		7)
8) Which of the foll	owing	compounds	exhibits hydrog	en bondin	χ?		8)
A) CH3OCH3	_	B) HI	, , , , ,	C) NH ₃	•	D) CH3Cl	~/ <u></u>
9) Parts per billion	require	s a multiplic	ation factor of _				9)
			C) 10 ⁹		D) 10 ⁶	E) 10-6	, <u></u>
10) Define freezing.							10)
A) the phase t							-
B) the phase t							
C) the phase transition from solid to gas D) the phase transition from gas to liquid							
D) the phase transition from gas to liquid E) the phase transition from liquid to solid							
2, the phase t	. wi willy	ii ii viii iiquii	a to somu				

11) Choose the pair of substances that are most likely to form a miscible solution. A) C ₆ H ₁₄ and H ₂ O				
B) C ₆ H ₁₄ and C ₁₀ H ₂₀				
C) N ₂ O ₄ and NH ₄ Cl				
D) LiBr and C ₅ H ₁₂				
E) None of the pairs above will form a homogeneous solution.				
 The rate-determining elementary reaction step in a reaction mechanism. A) always the last step 	12)			
B) the fast step				
C) always the second step				
D) the faster step				
E) the slowest step				
13) Place the following compounds in order of increasing strength of intermolecular forces.	13)			
CO ₂ F ₂ NH ₂ CH ₃				
A) NH ₂ CH ₃ < F ₂ < CO ₂				
B) NH ₂ CH ₃ < CO ₂ < F ₂				
C) CO ₂ < NH ₂ CH ₃ < F ₂				
D) F_2 < NH ₂ CH ₃ < CO ₂				
E) F ₂ < CO ₂ < NH ₂ CH ₃				

Part II Short Answer: Write the word or phrase or circle the choice that best completes each statement or answers the question. Some questions may require that you show work. If you do not show work, you may lose points. (40 pts)

1. Intermolecular forces question: (9 pts total, 3 pts each letter)

$$\begin{array}{c|c} H \\ \downarrow \\ H \end{array} \qquad \begin{array}{c} VSEPRT \ molecular \ shape = tetrahedral \end{array}$$

- (a) For the molecule shown, draw a dipole moment arrow for each bond in the molecule. (The dipole moment arrow should look like ()
- (b) The dipole moment for the molecule as a whole is [(zero) or (not zero)] (circle one)
- (c) The intermolecular force for this molecule is [(London force) or (dipole-dipole) or (hydrogen bonding)] (circle one)

2. For a reaction illustrated below, label (a) reactant (b) product (c) transition state (d) intermediate by filling in the blank with the appropriate letters. You may use each letter one time, many times or not at all. (9 pts)

Dr. Hahn

General Chemistry II Lecture

Exam II

Summer I 2013

3. For the following reaction mechanism and the overall reaction, give the expression for the rate law. You do not need to have the expression in only reagents given in the overall reaction. Assume all reactions including the overall reactions are irreversible. I am using letters A,B,C,... etc. to represent some molecule in the reaction mechanism and overall reaction. (8 pts)

$$2 A + 3 B$$
 $\xrightarrow{k_1}$ $2 D$ elementary reaction mechanism step (1) slow

$$2D + 2E \xrightarrow{k_2} F + 2G$$
 elementary reaction mechanism step (2) fast

$$2 A + 3 B + 2 E \rightarrow F + 2 G$$
 overall reaction

4. For the overall reaction given, show the rate expression using Δ [O₃ (g)] and change in time. (6 pts)

$$2 O_3(g) \rightarrow 3 O_2(g)$$

5. For the following overall reaction (not reaction mechanism step, the overall reaction), Given the concentrations and rates, give the order of the reactant by circling the order for the reagent given. You should assume an irreversible reaction. (note: I made up these reaction rate and concentrations to illustrate the point so the rate will not experimentally fit the date shown below.) (4 pts each, 8 pts total)

$$2NO_2(g) + Cl_2(g) \rightarrow 2CINO_2(g)$$

[NO ₂]	[Cl ₂]	rate 9
2	3	16
6	2	9
2	6	32

order of the [NO₂] is (zero) (one) (circle one) order of the [Cl₂] is (zero)(one) (circle one)

Part III.	Long Answer	Please show work for full cr	redit and to receive partial credit. (35 pts)
**** Plea	se attempt ever	y problem for partial credit.	You will get no partial credit if you just rewrite
		ige in anything.****	

1. If you want to heat 36.7 grams of liquid water from 75.2 °C to 100.0 °C, what is the heat required, q? $(q = m C \Delta T, C_{water} = 4.184 \text{ J/g} ^{\circ}C)$ (10 pts)

2. (a) For a 0.125 molal aqueous $Fe_2(SO_4)_3$ solution, what is the boiling point elevation? ($\Delta T_b = i \times m \times K_b = 0.512$ °C/m, You should assume complete dissociation of the $Fe_2(SO_4)_3$ in water. (9 pts)

(b) What is the boiling point of the solution in part (a). (boiling point of water is 100.0 °C) (2 pts)

Dr. Hahn Ge

General Chemistry II Lecture

- You have 23.7 grams of Li Br (molar mass = 86.84 g/mol) and dissolve it in 500.0 mL of water which results in a 520.2 mL of total solution (density of pure water = 1.00 g / mL). (I made up these numbers so these numbers do not fit experimental data.) (12 pts, 6 pts each)
- (a) What is the molarity (M) of the solution? (show work)

(b) What is the molality (m) of the solution? (show work)

Dr. Hahn